Math, asked by abdulrehmaaaan55, 5 hours ago

solve differential equation dy =2t(y2+9)dt​

Answers

Answered by dubeyanjali963
1

sorry make a like and follow and Star

Answered by akshay0222
2

Given,

\[dy = 2t\left( {{y^2} + 9} \right)dt\]\\

Solution,

Apply variable separable method.

\[\begin{array}{l} \Rightarrow dy = 2t\left( {{y^2} + 9} \right)dt\\ \Rightarrow \frac{{dy}}{{{y^2} + 9}} = 2tdt\end{array}\]

Integrate the terms.

\[\begin{array}{l} \Rightarrow \frac{1}{3}{\tan ^{ - 1}}\frac{y}{3} = 2 \times \frac{{{t^2}}}{2} + C\\ \Rightarrow \frac{1}{3}{\tan ^{ - 1}}\frac{y}{3} = {t^2} + C\\ \Rightarrow y = \frac{1}{3}\left[ {\tan \left( {3{t^2} + 3C} \right)} \right]\end{array}\]

Hence, the solution is \[\frac{1}{3}\left[ {\tan \left( {3{t^2} + 3C} \right)} \right].\]

Similar questions