solve differential equation sqrt 1+x2+y2+x2y2 + xy dy/dx=0
Answers
Answered by
56
We are not given any initial conditions.
ODE given :
√[1 + x² + y² + x²y²] + x y * dy/dx = 0 ---- (1)
=> √(1+x²) * √(1+y²) + x y * dy/dx = 0
=> y * dy / √(1+y²) = - dx *√(1+x²) / x ----- (2)
== RHS:
Let x = tan t. dx = sec² t dt
LHS of Eq (2): - sec² t dt * sec t /tan t
= - dt / [sin t * cos² t] = - Sin t * dt /[ sin² t * cos² t ]
Let cos t = z. Then RHS = dz /[z² (1 - z²) Use partial fractions.
RHS = dz * [ 1/z² + 1/(1-z²) ]
= dz / z² + 1/2* dz /(1-z) + 1/2* dz/(1+z)
Integrating RHS:
-1/z + 1/2 Ln | (1+z)/(1-z) | + K
= - sec t + 1/2 Ln | (1+cos t)/(1-cos t) | + K
= - √(1+x²) + 1/2 Ln { [√(1+x²) + 1] / [ √(1+x²) - 1 ] } + K
= - √(1+x²) + 1/2 Ln [ 2+x² + 2√(1+x²) ] - Ln x + K
By rationalizing the denominator
=== LHS:
Integration of LHS of equation (2) gives: √(1+y²)
So the solution is:
√(1+y²) = - √(1+x²) + 1/2 * Ln [2+x²+ 2√(1+x²) ] - Ln x + K
We can square both sides and then find RHS for y on the LHS.
ODE given :
√[1 + x² + y² + x²y²] + x y * dy/dx = 0 ---- (1)
=> √(1+x²) * √(1+y²) + x y * dy/dx = 0
=> y * dy / √(1+y²) = - dx *√(1+x²) / x ----- (2)
== RHS:
Let x = tan t. dx = sec² t dt
LHS of Eq (2): - sec² t dt * sec t /tan t
= - dt / [sin t * cos² t] = - Sin t * dt /[ sin² t * cos² t ]
Let cos t = z. Then RHS = dz /[z² (1 - z²) Use partial fractions.
RHS = dz * [ 1/z² + 1/(1-z²) ]
= dz / z² + 1/2* dz /(1-z) + 1/2* dz/(1+z)
Integrating RHS:
-1/z + 1/2 Ln | (1+z)/(1-z) | + K
= - sec t + 1/2 Ln | (1+cos t)/(1-cos t) | + K
= - √(1+x²) + 1/2 Ln { [√(1+x²) + 1] / [ √(1+x²) - 1 ] } + K
= - √(1+x²) + 1/2 Ln [ 2+x² + 2√(1+x²) ] - Ln x + K
By rationalizing the denominator
=== LHS:
Integration of LHS of equation (2) gives: √(1+y²)
So the solution is:
√(1+y²) = - √(1+x²) + 1/2 * Ln [2+x²+ 2√(1+x²) ] - Ln x + K
We can square both sides and then find RHS for y on the LHS.
kvnmurty:
click on red heart thanks abvoe pls
Similar questions