Math, asked by llxllMrTeddyllxll, 19 days ago

Solve !!!!!!

don't spam ⚠️⚠️ it's urgent ⚠️⚠️✨✨✨​

Attachments:

Answers

Answered by vikkiain
2

use \:  \: \boxed{if \:  \: a + b + c = 0 \:  \:then, \:{a}^{3}   +   {b}^{3}   + {c}^{3} =  3abc  }

Step-by-step explanation:

Given, \:  \:  \: a + b + c = 0 \\ Then, \:  \:  \: b + c =  - a,  \:  \: c + a =  - b,  \: and \:  \: a + b =  - c \\ Now, \:  \:  \:  {a}^{2} (b + c) +  {b}^{2} (c + a) +  {c}^{2} (a + b) + 3abc \\ putting \:  \: values \\  =  {a}^{2}  \times  - a +  {b}^{2}  \times  - b +  {c}^{2}  \times  - c + 3abc \\  =  -  {a}^{3}  -  {b}^{3}  -  {c}^{3}  - 3abc \\  =  - ( {a}^{3}   +   {b}^{3}   + {c}^{3}) +  3abc \\ we \:  \: know \:  \: that \:  \:  \boxed{if \:  \: a + b + c = 0 \:  \:then, \:{a}^{3}   +   {b}^{3}   + {c}^{3} =  3abc  } \\ so, \:  \:   \: =  - 3abc + 3abc = 0

Answered by kanakrathor07
4

Answer:

In order to prove that

4a^2-b^2+c^2+4ac=0

4a^2+c^2+4ac=b^2

(2a+c)^2=b^2

2a+c=b

2a+c-b=0

From this we get eq1=eq2

Hence proved.

Attachments:
Similar questions