Math, asked by tarakeshwarrao, 1 year ago

solve dy/dx=e^3x-2y+ x^2 e^-2y

Attachments:

Answers

Answered by MaheswariS
4

\textbf{Given:}

\text{We apply variable separable method to solve the}

\text{given differential equation}

\displaystyle\frac{dy}{dx}=e^{3x-2y}+x^2e^{-2y}

\displaystyle\frac{dy}{dx}=e^{3x}^{-2y}+x^2e^{-2y}

\displaystyle\frac{dy}{dx}=(e^{3x}+x^2)e^{-2y}

\implies\displaystyle\frac{1}{e^{-2y}}\frac{dy}{dx}=(e^{3x}+x^2)

\implies\displaystyle\,e^{2y}\frac{dy}{dx}=(e^{3x}+x^2)

\implies\displaystyle\,e^{2y}\,dy=(e^{3x}+x^2)dx

\text{Integrating}

\displaystyle\int\,e^{2y}\,dy=\int(e^{3x}+x^2)dx

\displaystyle\bf\,\frac{e^{2y}}{2}=\frac{e^{3x}}{3}+\frac{x^3}{3}+c

\therefore\textbf{The solution is $\bf\,\frac{e^{2y}}{2}=\frac{e^{3x}}{3}+\frac{x^3}{3}+c$}

Find more:

Solve x(x-y)dy+y^2dx=0​

https://brainly.in/question/13164355

Similar questions