Math, asked by tanga69, 1 year ago

solve dy/dx+y.tanx=secx​

Answers

Answered by MaheswariS
0

\textbf{Given equation is }

\frac{dy}{dx}+y\;tanx=secx

\text{This is linear differential equation in x}

\text{The solution of this equation is}

\boxed{\bf\,y\,e^{\int{P}\,dx}=\int\;Q\, e^{\int{P}\,dx}\,dx+c}

\text{Here P=tanx and Q=secx}

\text{Now,}

e^{\int{P}\,dx}

=e^{\int{tanx}\,dx}

=e^{log\,secx}

=secx

\text{The solution is}

\bf\,y\,e^{\int{P}\,dx}=\int\;Q\, e^{\int{P}\,dx}\,dx+c

y\,secx=\int\;secx\,secx \,dx+c

y\,secx=\int\;sec^2x \,dx+c

\implies\boxed{\bf\,y\,secx=tanx+c}

\therefore\textbf{The solution is y secx=tanx+c}

Find more:

If y = y(x) is solution of the differential equation x. (dy/dx) + 2y = x²

satisfying y(1) = 1, then y(1/2)

is equal to (A) 7/64

(B) 1/4

(C) 49/16

(D) 13/16

[JEE Main 2019]

https://brainly.in/question/16030167

Similar questions