Solve dy/dx=(y³+3x²y) /(x³+3xy²)
Answers
we have to solve dy/dx = (y³ + 3x²y)/(x³ + 3xy²)
dy/dx = (y³/x³ + 3x²y/x³)/(x³/x³ + 3xy²/x³)
= {(y/x)³ + 3(y/x)}/{1 + 3(y/x)²}
let y/x = P ⇒y = Px
differentiating both sides,
dy/dx = P + x dP/dx
after substitution we get,
P + x dP/dx = (P³ + 3P)/(1 + 3P²)
⇒x dP/dx = (P³ + 3P)/(1 + 3P²) - P
⇒x dP/dx = (P³ + 3P - P - 3P³)/(1 + 3P²)
⇒x dP/dx = (2P - 2P³)/(1 + 3P²)
⇒(1 + 3P²)dP/(2P - 2P³) = dx/x
⇒∫(1 + 3P²)dP/2P(1 - P)(1 + P)= ∫dx/x
using partial fraction method ,
(1 + 3P²)/P(1 - P)(1 + P) = A/P + B/(1 - P) + C/(1 + P)
1 + 3P² = A(1 - P²) + B(P + P²) + C(P - P²)
1 + 3P² = (B + C)P + (-A + B - C)P² + A
on comparing we get,
A = 1 , B + C = 0, -A + B - C = 3
-1 -C - C = 3 ⇒C = -2 and B = 2
(1 + 3P²)/2P(1 - P)(1 + P) = 1/2P + 1/(1 - P) - 1/(1 + P)
now, ∫dP/2P + ∫dP/(1 - P) - ∫dP/(1 + P) = ∫dx/x
⇒1/2 lnP + ln(1 - P) - ln(1 + P) = lnx + lnC
⇒ln{P(1 - P)²/(1 + P)²} = 2lnCx
⇒P(1 - P)²/(1 + P)² = C²x²
⇒(y/x)(1 - y/x)²/(1 + y/x)² = Kx²
⇒y(x - y)²/(x + y)² = Kx³
hence solution of equation is y(x - y)²/(x + y)² = Kx³