Math, asked by Anonymous, 7 months ago

solve each equation by factoring K^+15K=-56​

Answers

Answered by kmpsujipavi
0

Answer:

"k2"   was replaced by   "k^2".

  k^2+15*k-(-56)=0 

Step-by-step explanation:

 Factoring  k2+15k+56 

The first term is,  k2  its coefficient is  1 .

The middle term is,  +15k  its coefficient is  15 .

The last term, "the constant", is  +56 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 56 = 56 

Step-2 : Find two factors of  56  whose sum equals the coefficient of the middle term, which is   15 .

-56   +   -1   =   -57    

-28   +   -2   =   -30   

-14   +   -4   =   -18   

-8   +   -7   =   -15  

-7   +   -8   =   -15    

-4   +   -14   =   -18    

-2   +   -28   =   -30  

-1   +   -56   =   -57    

1   +   56   =   57   

2   +   28   =   30    

4   +   14   =   18    

7   +   8   =   15   That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  7  and  8 

                     k2 + 7k + 8k + 56

Step-4 : Add up the first 2 terms, pulling out like factors :

                    k • (k+7)

              Add up the last 2 terms, pulling out common factors :

                    8 • (k+7)

Step-5 : Add up the four terms of step 4 :

                    (k+8)  •  (k+7)

(k + 8) • (k + 7) = 0

 Solve  :    k+8 = 0 

 Subtract  8  from both sides of the equation : 

                      k = -8

Solve  :    k+7 = 0 

 Subtract  7  from both sides of the equation :                   k = -7

Answered by nusrathcassim
0

Answer:

Step-by-step explanation:

k^+15k+56=0

8*7=56

8+7=15

therefore

(k+8)(k+7)

Similar questions