Math, asked by kiavalencia, 11 hours ago

Solve each of the following equation by completing the square or quadratic formula

1. 2x² - 5x - 3 = 0
2. x² + 4x -7 = 0
3. 2x² - 4x = -1


ibrainliest ko makasagot

report pag walang kwenta or mali​

Answers

Answered by vipashyana1
1

Answer:

1)2 {x}^{2}  - 5x - 3 = 0 \\ a = 2 ,\: b = ( - 5), \: c = ( - 3) \\ x =  \frac{( - b)± \sqrt{ {b}^{2} - 4ac } }{2a}  \\  =  \frac{ - ( - 5)± \sqrt{ {( - 5)}^{2} - 4(2)( - 3) } }{2(2)}  \\  =  \frac{5± \sqrt{25 + 25} }{4}  \\  =  \frac{5± \sqrt{50} }{4}  \\  =  \frac{5±5 \sqrt{2} }{4}  \\  =  \frac{5 + 5 \sqrt{2} }{4}  \: and \:  \frac{5 - 5 \sqrt{2} }{4}  \\  =  \frac{5(1 +  \sqrt{2} )}{4}  \: and \:  \frac{5(1 -  \sqrt{2}) }{4}  \\ 2) {x}^{2}  + 4x - 7 = 0 \\ a = 1 ,\: b = 4, \: c = ( - 7) \\ x =  \frac{( - b)± \sqrt{ {b}^{2} - 4ac } }{2a}  \\  =  \frac{( - 4)± \sqrt{ {( - 4)}^{2} - 4(1)( - 7) } }{2(1)}  \\  =  \frac{( - 4)± \sqrt{16 + 28} }{2}  \\  =  \frac{( - 4)± \sqrt{44} }{2}  \\  =  \frac{( - 4)±2\sqrt{11} }{4}  \\  =  \frac{2(   - 2± \sqrt{11} )} {4}  \\  =  \frac{( - 2)± \sqrt{11} }{2}  \\  =  \frac{( - 2) +  \sqrt{11} }{2}  \: and \:  \frac{( - 2) -  \sqrt{11} }{2}  \\ 3)2 {x}^{2}  - 4x = ( - 1) \\ 2 {x}^{2}  - 4x + 1 = 0 \\ a = 2 ,\: b = ( - 4),   \: c = 1 \\ x =  \frac{( - b)± \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  =  \frac{ - ( - 4)± \sqrt{ {( - 4)}^{2} - 4(2)(1) } }{2(2)}  \\  =  \frac{4± \sqrt{16 - 8} }{4}  \\  =  \frac{4± \sqrt{8} }{4}  \\  =  \frac{4±2 \sqrt{2} }{4} \\   =  \frac{2(2± \sqrt{2}) }{4}  \\  =  \frac{2± \sqrt{2} }{2}  \\  =  \frac{2 +  \sqrt{2} }{2}  \: and \:   \frac{2 +  \sqrt{2} }{2}

Similar questions