Math, asked by khanimran3670, 9 months ago

Solve each of the following systems of equations by the method of cross-multiplication:
2/x + 3/y =135/x - 4/y =-2 where x ≠ 0, y ≠ 0

Answers

Answered by jitendra420156
0

Therefore the solution is

x = -\frac{59}{2}   and   y=-\frac{59}{38}

Step-by-step explanation:

Given equation are

\frac{2}{x}+\frac{3}{y}=-2.....(1)

and

\frac{135}{x}-\frac{4}{y}=-2......(2)

To solve the equations let \frac{1}{x}=u  and  \frac{1}{y}=v

The equation becomes

2u+3v+2=0

and 135u-4v+2=0

Now solving this equation by the method of cross multiplication

\frac{u}{3.2-2.(-4)}=\frac{v}{135.2-2.2}=\frac{1}{2.(-4)-3.135}

\Rightarrow \frac{u}{14}=\frac{v}{266}=\frac{1}{-413}

Therefore,

u=-\frac{14}{413}      and   v=-\frac{266}{413}

Putting  \frac{1}{x}=u  and  \frac{1}{y}=v

\frac{1}{x}=-\frac{14}{413}       and   \frac{1}{y}=-\frac{266}{413}

\Rightarrow x =-\frac{413}{14}            y=- \frac{413}{266}

\Rightarrow x = -\frac{59}{2}              y=-\frac{59}{38}

Therefore the solution is

x = -\frac{59}{2}   and   y=-\frac{59}{38}

Similar questions