Solve each of the following systems of equations by the method of cross-multiplication:
(a-b)x+(a+b)y = 2a²-2b²(a+b)(x+y)=4ab
Answers
Answered by
0
From the solved given equations we get the values of x and y are
and
respectively
Step-by-step explanation:
Given equations are and
To solve the given equations by Cross Multiplication method :
- The given equations becomes
and
- Now solving the above two equations
- For the equations
and
The formula is ![\frac{x}{b_1c_2-b_2c_1}=\frac{y}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1} \frac{x}{b_1c_2-b_2c_1}=\frac{y}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7Bb_1c_2-b_2c_1%7D%3D%5Cfrac%7By%7D%7Bc_1a_2-c_2a_1%7D%3D%5Cfrac%7B1%7D%7Ba_1b_2-a_2b_1%7D)
a+b a-b a+b
a+b -4ab a+b a+b
Substitute the values we get
Now equating ![\frac{x}{-4ab(a+b)+(a+b)(2a^2-2b^2)}=\frac{1}{(a-b)(a+b)-(a+b)(a+b)} \frac{x}{-4ab(a+b)+(a+b)(2a^2-2b^2)}=\frac{1}{(a-b)(a+b)-(a+b)(a+b)}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B-4ab%28a%2Bb%29%2B%28a%2Bb%29%282a%5E2-2b%5E2%29%7D%3D%5Cfrac%7B1%7D%7B%28a-b%29%28a%2Bb%29-%28a%2Bb%29%28a%2Bb%29%7D)
Therefore the value of x is ![\frac{2ab-a^2+b^2}{b} \frac{2ab-a^2+b^2}{b}](https://tex.z-dn.net/?f=%5Cfrac%7B2ab-a%5E2%2Bb%5E2%7D%7Bb%7D)
Now equating ![\frac{y}{-(a+b)(2a^2-2b^2)+4ab(a-b)}=\frac{1}{(a-b)(a+b)-(a+b)(a+b)} \frac{y}{-(a+b)(2a^2-2b^2)+4ab(a-b)}=\frac{1}{(a-b)(a+b)-(a+b)(a+b)}](https://tex.z-dn.net/?f=%5Cfrac%7By%7D%7B-%28a%2Bb%29%282a%5E2-2b%5E2%29%2B4ab%28a-b%29%7D%3D%5Cfrac%7B1%7D%7B%28a-b%29%28a%2Bb%29-%28a%2Bb%29%28a%2Bb%29%7D)
Therefore the value of y is ![\frac{(a-b)[a^2+b^2]}{b(a+b)} \frac{(a-b)[a^2+b^2]}{b(a+b)}](https://tex.z-dn.net/?f=%5Cfrac%7B%28a-b%29%5Ba%5E2%2Bb%5E2%5D%7D%7Bb%28a%2Bb%29%7D)
From the solved given equations we get the values of x and y are
and
respectively
Similar questions