Math, asked by nagasai6253, 9 months ago

Solve each of the following systems of equations by the method of cross-multiplication:
a²x+b²y=c²b²x+a²y=a²

Answers

Answered by MaheswariS
1

\text{Given equations are}

a^2x+b^2y=c^2

b^2x+a^2y=c^2

\text{It can be written as}

a^2x+b^2y-c^2=0

b^2x+a^2y-c^2=0

\textbf{By cross multiplication rule, we have}

\displaystyle\frac{x}{-b^2c^2+a^2c^2}=\frac{y}{-b^2c^2+a^2c^2}=\frac{1}{a^4-b^4}

\displaystyle\frac{x}{c^2(a^2-b^2)}=\frac{y}{c^2(a^2-b^2)}=\frac{1}{(a^2)^2-(b^2)^2}

\displaystyle\frac{x}{c^2(a^2-b^2)}=\frac{y}{c^2(a^2-b^2)}=\frac{1}{(a^2-b^2)(a^2+b^2)}

\displaystyle\frac{x}{c^2}=\frac{y}{c^2}=\frac{1}{a^2+b^2}

\displaystyle\,x=\frac{c^2}{a^2+b^2},\;y=\frac{c^2}{a^2+b^2}

\therefore\textbf{The solution is}\;\bf\;x=\frac{c^2}{a^2+b^2},\;\;y=\frac{c^2}{a^2+b^2}

Find more:

SOLVE 2x+y=5 , 3x+2y=8 using cross multiplication method

https://brainly.in/question/5018449#

Similar questions