Math, asked by Mkktdvj, 9 months ago

Solve equations x+y+z=1,2x+2y+3z=6,x+4y+9z=3 by using cramers rule.
Answer is 7,-10,4

Answers

Answered by sprao53413
31

Answer:

Please see the attachment

Attachments:
Answered by isyllus
26

x = 7

y = -10

z = 4

Step-by-step explanation:

The given system of equations,

x+y+z=1\\2x+2y+3z=6\\x+4y+9z=3

Using cramer's rule

x=\dfrac{|A_x|}{|A|}\\ y=\dfrac{|A_y|}{|A|}\\ z=\dfrac{|A_z|}{|A|}

where,

A=\begin{vmatrix}1&1&1\\2&2&3\\1&4&9\end{vmatrix}

B=\begin{vmatrix}1\\6\\3\end{vmatrix}

Now find determinant of |A|

|A|=1(2\cdot9-3\cdot4)-1(2\cdot9-1\cdot3)+1(2\cdot4-1\cdot2)=-3

  • Now the determinant A_x replace first column by B

A_x=\begin{vmatrix}1&1&1\\6&2&3\\3&4&9\end{vmatrix}

|A_x|=1\cdot \:6-1\cdot \:45+1\cdot \:18=-21

  • Now the determinant A_y replace second column by B in A

A_y=\begin{vmatrix}1&1&1\\2&6&3\\1&3&9\end{vmatrix}

|A_y|=1\cdot \:45-1\cdot \:15+1\cdot \:0=30

  • Now the determinant A_z replace third column by B in A

A_z=\begin{vmatrix}1&1&1\\2&2&6\\1&4&3\end{vmatrix}

|A_z|=1\cdot \left(-18\right)-1\cdot \:0+1\cdot \:6=-12

\therefore x=\dfrac{|A_x|}{|A|}=\dfrac{-21}{-3}=7\\ \Rightarrow y=\dfrac{|A_y|}{|A|}=\dfrac{30}{-3}=-10\\ \Rightarrow z=\dfrac{|A_z|}{|A|}=\dfrac{-12}{-3}=4

Hence, the values are 7, -10 and 4

#Learn more:

https://brainly.in/question/6822095

Similar questions