Math, asked by Maharanawarshweta, 10 months ago

solve
Find angle between line​

Attachments:

Answers

Answered by rishu6845
5

Answer:

 \boxed{ \huge{  \pink{ a)  2  \: {tan}^{ - 1} ( \dfrac{b}{a})}}}

Step-by-step explanation:

 \bold{ \underline{ \red{To \: find}}} \longrightarrow \\ angle \: between \: lines \\  \dfrac{x}{a}  +  \dfrac{y}{b}  = 1 \\   \dfrac{x}{a}  -  \dfrac{y}{b}  = 1

 \bold{ \underline {\orange{Concept \: used}}} \longrightarrow \\ 1)slope \: of \: a \: line =  -  \dfrac{coefficient \: of \: x}{coefficient \:of \: y }   \\ 2)angle \: between \: two \: lines \\ tan \theta =  | \dfrac{m(1)  - m(2)}{1 + m(1)m(2)} |  \\ 3)tan2 \theta =  \dfrac{2tan \theta}{1 -  {tan}^{2}  \theta}

 \bold{ \underline{ \blue{Solution}}} \longrightarrow \\  \dfrac{x}{a}  +  \dfrac{y}{b}  = 1.......(1) \\let \:  slope \: of \: line \: (1) \: is \: m(1) \\ m(1) =  -  \dfrac{coefficient \: of \: x}{coefficient \: of \: y}  \\ m(1) =  -  \dfrac{ \dfrac{1}{a} }{ \dfrac{1}{b} }  \\   m(1) =  -  \frac{b}{a}  \\  \dfrac{x}{a}  -  \dfrac{y}{b}  = 1......(2) \\ let \: slope \: of \: line \: (2) \: is \: m(2) \\ m(2) =  -  \dfrac{ \dfrac{1}{a} }{ -  \dfrac{1}{b} }  \\ m(2) =  \dfrac{b}{a}

now

let \: angle \: between \: lines \: is  \: \theta \\ tan \theta =  | \dfrac{m(1) - m(2)}{1 + m(1)m(2)} |   \\ tan \theta =  | \dfrac{ -  \dfrac{b}{a}  -  \dfrac{b}{a} }{1 + ( -  \dfrac{b}{a})( \dfrac{b}{a}  )} |  \\ tan \theta =  | \dfrac{ -  \dfrac{2b}{a} }{1 +  \dfrac{ {b}^{2} }{ {a}^{2} } } |  \\ tan \theta =  \dfrac{2 \dfrac{b}{a} }{1 +  {( \dfrac{b}{a}) }^{2} }  \\ let \:   \\\dfrac{b}{a}  = tan \alpha  =  >  \alpha  =  {tan}^{ - 1} ( \dfrac{b}{a} ) \\ tan \theta =  \dfrac{2tan \alpha }{1 -  {tan}^{2} \alpha  }  \\  tan \theta  = tan2 \alpha  \\  \theta = 2 \alpha  \\  \theta = 2 \:  {tan}^{  - 1} ( \dfrac{b}{a})

Similar questions