solve following differential equations:
(equation solvable for p)
p(p-y)=X(X+y)
Answers
The answer for p(p-y)=X(X+y) is (2y + x^2 - c )( x + y + 1 - ce^x ) = 0
Given :
p(p-y)=X(X+y)
Find :
solve of the following p(p-y)=X(X+y)
Solution :
p ( p - y ) = x ( x + y )
p^2 - yp = x^2 + xy
p^2 - x^2 - yp - xy = 0
( p^2 - x^2 ) - y( p + x ) = 0
( p + x ) ( p - x ) - y( p + x ) = 0
( p + x ). [ ( p - x) - y ] = 0
( p + x ). [ p - x - y ] = 0
first factor equated to zero given
p + x = 0
dy/dx = -x
dy = -xdx
{ 1dy = -{ xdx
y = -x^2/2 + c^1
2y = -x^2 + 2c^1
settibg 2c61 = c
( 2y + x^2 - c )=0....................(eq 1)
second factor equated to zero given
( p - x - y) = 0
dy/dx - y = x dy/dx + py = 2
p= -1
I.F = e^{ -1 dx
I.F = e^-x
solution of then differential equation
yc e^-x = { x.e^-x dx + c
y e^-x
ye = -x e^-x + e^-x/-1 + c
ye^-x = -xe^-x - e^-x + c
ye^-x + xe^-x + e^-x = c
e^-x( y + x + 1) = c
( x+ y + 1 )/e^x = c
( x + y + 1 ) = ce^x
[ ( x + y + 1) - ce^x ] = 0....................(eq 2)
The final answer is,
(2y + x^2 - c )( x + y + 1 - ce^x ) = 0
Hence, the solution for the differential equation is (2y + x^2 - c )( x + y + 1 - ce^x ) = 0.
#SPJ1