Math, asked by sweetylyceum6611, 1 year ago

Solve following differential equations (x-y)^2 dy/dx=a^2.

Answers

Answered by mustaphaismail304
3

solution

(x-y)²dy/dx=a²

2(x-y)(1-dy/dx)=0

(2x-2y)(1-dy/dx)=0

2x-2dy/dx-2y+2ydy/dx=0

-2dy/dx+2ydy/dx=2y-2x

⇒ dy/dx=(2y-2x)/(2y-2)


Answered by athleticregina
3

Answer:

The solution for the given differential equation (x-y)^2\frac{dy}{dx}=a^2  is a\times\ \tan^{-1}(x-y)=y+c.

Step-by-step explanation:

Consider, the given differential equation,

(x-y)^2\frac{dy}{dx}=a^2   ..............(1)

Put x-y=u then differentiate with respect to x, we get

1-\frac{dy}{dx}=\frac{du}{dx}

\frac{dy}{dx}=1-\frac{du}{dx}

Substitute in (1), then (x-y)^2\frac{dy}{dx}=a^2 becomes,

u^2(1-\frac{du}{dx})=a^2

u^2-u^2\frac{du}{dx})=a^2

u^2\frac{du}{dx})=u^2-a^2

Taking similar terms together,

\frac{u^2}{u^2-a^2} {du}=dx

Add and Subtract a^2 in left side, then

\frac{u^2-a^2+a^2}{u^2-a^2} {du}=dx

Splitting terms,

(\frac{u^2-a^2}{u^2-a^2}+\frac{a^2}{u^2-a^2}){du}=dx

(1+\frac{a^2}{u^2-a^2}){du}=dx

Differentiate both sides,

\int{du}+\int\frac{a^2}{u^2-a^2}{du}=\int{dx}

\int(\frac{1}{u^2-a^2})du=\frac{1}{a} \tan^{-1}u

u+a^2\times\frac{1}{a} \tan^{-1}u=x+c

u+a\times\ \tan^{-1}u=x+c

Put value of u = x-y

(x-y)+a\times\ \tan^{-1}(x-y)=x+c

-y+a\times\ \tan^{-1}(x-y)=c

a\times\ \tan^{-1}(x-y)=y+c

Thus, the solution for the given differential equation (x-y)^2\frac{dy}{dx}=a^2  is a\times\ \tan^{-1}(x-y)=y+c.


Similar questions