SOLVE FOR 8 POINTS
In figure 11.36, ABCD is a tripezium. If
,then find the value of
Attachments:
Answers
Answered by
26
Given :
___________________________
To Find :
- Value of x
__________________________
Solution :
__________________________
Put value of y
__________________________________
Use angle sum property of triangle in ΔBCD
Value of x is 48°
Answered by
14
Solution :-
We have to find the value of x
So, we need to find values of y and z in terms of x
1) x = 4y/3
⇒ 3x/4 = y
⇒ y = 3x/4
2) y = 3z/8
⇒ 8y/3 = z
⇒ z = 8y/3
Substituting y = 3x/4
⇒ z = 8/3 * (3x/4)
⇒ z = 2x
Now In trapezium ABCD
AB || CD and BD is transvervsal
⇒ ∠ABD = ∠BDC = x [ Alternate angles are equal ]
Consider ΔBDC
By Angle sum property
∠BDC + ∠DBC + ∠BCD = 180°
⇒ x + y + z = 180°
Substituting y = 3x/4 and z = 2x
⇒ x + 3x/4 + 2x = 180
⇒ (4x + 3x + 8x) /4 = 180
⇒ 15x/4 = 180
⇒ 15x = 180 * 4
⇒ x = (180 * 4)/15
⇒ x = 12 * 4 = 48°
Therefore the value of x is 48°.
Similar questions