Math, asked by ramesh84menaria, 11 months ago

SOLVE FOR 8 POINTS
In figure 11.36, ABCD is a tripezium. If
x = \frac{4}{3} y
y = \frac{3}{8}z

,then find the value of
x

Attachments:

Answers

Answered by Anonymous
26

\huge  {\orange{\boxed{ \overline{ \underline{ \mid\mathfrak{\red{Sol}}{\mathrm{\blue{ut}}{ \sf{\green{ion}}}   \pink{\colon}\mid}}}}}}

Given :

\sf{x = \dfrac{4}{3} y}

\sf{y = \dfrac{3}{8}z}

___________________________

To Find :

  • Value of x

__________________________

Solution :

\sf{x \: = \: \dfrac{4}{3}y} \\ \\ \implies {\sf{y \: = \: \dfrac{3}{4}x}}

__________________________

\sf{y \: = \: \dfrac{3}{8}z} \\ \\ \implies {\sf{z \: = \: \dfrac{8}{3}y}}

Put value of y

\implies {\sf{z \: = \: \dfrac{8}{3} \: \times \: \dfrac{3}{4}x}} \\ \\ \implies {\sf{z \: = \: 2x}}

__________________________________

Use angle sum property of triangle in ΔBCD

\implies {\sf{\angle BCD \: + \: \angle DBC \: + \: \angle BDC \: = \: 180 }} \\ \\ \implies {\sf{x \: + \: y \: + \: z \: = \: 180}} \\ \\ \implies {\sf{x \: = \: \dfrac{3}{4}x \: + \: 2x \: = \: 180}} \\ \\ \implies {\sf{\dfrac{4x\: + \: 3x \: + \: 8x}{4} \: = \: 180}} \\ \\ \implies {\sf{\dfrac{15x}{4} \: = \: 180}} \\ \\ \implies {\sf{15x \: = \: 180 \: \times \: 4}} \\ \\ \implies {\sf{15x \: = \: 720}} \\ \\ \implies {\sf{x \: = \: \dfrac{720}{15}}}\\ \\ \implies {\sf{x \: = \: 48}}

Value of x is 48°

Answered by Anonymous
14

Solution :-

We have to find the value of x

So, we need to find values of y and z in terms of x

1) x = 4y/3

⇒ 3x/4 = y

⇒ y = 3x/4

2) y = 3z/8

⇒ 8y/3 = z

⇒ z = 8y/3

Substituting y = 3x/4

⇒ z = 8/3 * (3x/4)

⇒ z = 2x

Now In trapezium ABCD

AB || CD and BD is transvervsal

⇒ ∠ABD = ∠BDC = x [ Alternate angles are equal ]

Consider ΔBDC

By Angle sum property

∠BDC + ∠DBC + ∠BCD = 180°

⇒ x + y + z = 180°

Substituting y = 3x/4 and z = 2x

⇒ x + 3x/4 + 2x = 180

⇒ (4x + 3x + 8x) /4 = 180

⇒ 15x/4 = 180

⇒ 15x = 180 * 4

⇒ x = (180 * 4)/15

⇒ x = 12 * 4 = 48°

Therefore the value of x is 48°.

Similar questions