Math, asked by shreyaskrishna35, 1 month ago

Solve for m and n in the equations 4m + 3n + 24= 0 and 7m – 2n = -13, hence find 3m – 4n

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

The given pair of linear equations are

\rm :\longmapsto\:4m + 3n  =  -  \: 24 -  -  - (1)

and

\rm :\longmapsto\:7m - 2n  =  - 13 -  -  - (2)

Now, we use elimination method to solve these system of linear equations.

Multiply equation (1) by 2, we get

\rm :\longmapsto\:8m + 6n  =  -  \: 48 -  -  - (3)

Now, Multiply equation (2) by 3, we get

\rm :\longmapsto\:21m - 6n  =  - 39 - -  -  - (4)

On adding equation (3) and equation (4), we get

\rm :\longmapsto\:29m   =  - 87

\bf\implies \:m \:  =  \:  -  \: 3

On substituting m = - 3, in equation (1), we get

\rm :\longmapsto\:4( - 3) + 3n  =  -  \: 24

\rm :\longmapsto\: - 12+ 3n  =  -  \: 24

\rm :\longmapsto\: 3n  =  -  \: 24 + 12

\rm :\longmapsto\: 3n  =  -  \: 12

\bf\implies \:n \:  =  \:  -  \: 4

Verification :-

Consider equation (2), we have

\rm :\longmapsto\:7m - 2n  =  - 13

On substituting the values of m and n, we get

\rm :\longmapsto\:7( - 3) - 2( - 4)  =  - 13

\rm :\longmapsto\: - 21 + 8 =  - 13

\rm :\longmapsto\: - 13 =  - 13

Hence, Verified

Now, Consider

\red{\bf :\longmapsto\:3m - 4n}

On substituting the values of m and n, we get

\rm \:  =  \:  \: 3( - 3) - 4( - 4)

\rm \:  =  \:  \:  - 9 + 16

\rm \:  =  \:  \: 7

So,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underbrace{\boxed{ \bf{ \:  \:  \:  \:  \: 3m - 4n = 7 \:  \:  \:  \:  \: }}}

Similar questions