Math, asked by Gloriousstar10, 9 months ago

Solve for m:-

 { \frac{2}{5} }^{-3}  +  { \frac{2}{5} }^{m}  =  { \frac{2}{5} }^{5}

Answers

Answered by Anonymous
1

Answer:

\boxed{\sf\  \implies:m = 8 }

Step-by-step explanation:

 { \frac{2}{5} }^{-3} + { \frac{2}{5} }^{m} = { \frac{2}{5} }^{5}  \\  \\   \sf\  \implies: - 3 + m = 5 \\  \\  \sf\  \implies:m = 5 + 3 \\  \\  \boxed{\sf\  \implies:m = 8 } </p><p>

Answered by Anonymous
8

Question:-

Solve for m:-

 ({ \frac{2}{5} })^{ - 3}  + ( { \frac{2}{5} })^{m}  = ( { \frac{2}{5} })^{5}

{\green{\underline{\underline{\bold{Solution:-}}}}}

({ \frac{2}{5} })^{ - 3}  + ( { \frac{2}{5} })^{m}  = ( { \frac{2}{5} })^{5}

As we know ({a})^{-n} = \frac{1}{{a}^{n}}

({ \frac{2}{5} })^{ - 3} = ({ \frac{5}{3} })^{ 3}

({ \frac{5}{3} })^{ 3} + ({ \frac{2}{5} })^{m} = ({ \frac{2}{5} })^{5}

({ \frac{2}{5} })^{ m} = ({ \frac{2}{5} })^{5} = ({ \frac{2}{5} })^{3}

({ \frac{2}{5} })^{m} = ({ \frac{2}{5} })^{5+3} [ Since, {a}^{m}×{a}^{n} = {a}^{m+n} ]

({ \frac{2}{5} })^{m} = ({ \frac{2}{5} })^{8}

m = 8 [ If {a}^{m}={a}^{n} ,\:then\: m = n ]

_____________

Identities used here:-

  • ({a})^{-n} = \frac{1}{{a}^{n}}
  • {a}^{m}×{a}^{n} = {a}^{m+n}
  • If {a}^{m}={a}^{n} ,\:then\: m = n
Similar questions