Math, asked by DrEamErclaSs10, 11 months ago

Solve for the following quadratic equation for x ; x^2 + ( a+b/a + a/a+b) x + 1 = 0​

Answers

Answered by chitraesther2012
2

Answer:

x= -a/a+b, or -(a+b)/a

Step-by-step explanation:

x^2+a+b/a x+a/a+b x+1=0

x(x+a/a+b )+a+b/a(x+1/a+b/a)=0

(x+a/a+b )(x+a+b/a)=0

x= -a/a+b, or -(a+b)/a

Answered by Anonymous
22

Question

 \large{ \sf{ {x}^{2}  + ( \dfrac{a + b}{ a}  +  \dfrac{a}{a + b}) + 1 = 0 }}

Solution

Given,

 \large{ \sf{ {x}^{2}  + ( \dfrac{a + b}{ a}  +  \dfrac{a}{a + b}) + 1 = 0 }}

The constant term can be expressed as :

 \sf{ \dfrac{a + b}{a} \times  \dfrac{a}{ a + b}  }

 \implies \:  \sf{x {}^{2} +  \dfrac{a + b}{a} x +  \dfrac{a}{a + b}x  +  \dfrac{a + b}{a}. \dfrac{a}{a + b} = 0 } \\  \\  \implies \:  \sf{x(x +  \dfrac{a + b}{a} ) +  \dfrac{a}{a + b}(x +  \dfrac{a + b}{a})  = 0} \\  \\  \implies \:  \sf{(x +  \dfrac{a}{a  + b})(x +  \dfrac{a + b}{a}) = 0} \\  \\  \large{\implies \:  \boxed{ \boxed{\sf{x =  -  \frac{a}{a + b}  \: or \:  -  \frac{a + b}{a} }}}}

Similar questions