Math, asked by vicky9136, 9 months ago

Solve for theta.
4 sin²theta - 2 (√3+1) sin theta + √3 = 0​

Answers

Answered by llBestFriendsll
2

Answer:

\theta = \dfrac{\pi }{3}θ=

3

π

and

\theta = \dfrac{\pi }{6}θ=

6

π

Step-by-step explanation:

Given that-

4Sin^{2}\theta -2(\sqrt{3}+1)Sin\theta +\sqrt{3} = 04Sin

2

θ−2(

3

+1)Sinθ+

3

=0

4Sin^{2}\theta -2\sqrt{3}Sin\theta - 2Sin\theta + \sqrt{3} = 04Sin

2

θ−2

3

Sinθ−2Sinθ+

3

=0

2Sin\theta(2Sin\theta -\sqrt{3}) -1(2Sin\theta - \sqrt{3} = 02Sinθ(2Sinθ−

3

)−1(2Sinθ−

3

=0

(2Sin\theta - \sqrt{3}) (2Sin\theta - 1) = 0(2Sinθ−

3

)(2Sinθ−1)=0

If, 2Sin\theta - \sqrt{3} = 02Sinθ−

3

=0

2Sin\theta = \sqrt{3}2Sinθ=

3

Sin\theta = \dfrac{\sqrt{3} }{2}Sinθ=

2

3

Sin\theta = Sin\dfrac{\pi }{3}Sinθ=Sin

3

π

\theta = \dfrac{\pi }{3}θ=

3

π

If, 2sin\theta - 1 =02sinθ−1=0

2Sin\theta = 12Sinθ=1

Sin\theta = \dfrac{1}{2}Sinθ=

2

1

Sin\theta = Sin\dfrac{\pi }{6}Sinθ=Sin

6

π

\theta = \dfrac{\pi }{6}θ=

6

π

Similar questions