Math, asked by itachi3, 1 year ago

solve for x 1/x+1 +2/x+2=4/x+4

Answers

Answered by presentmoment
427

\bold{x=(2 \pm \sqrt{3})} is the value of x for \bold{\frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4}}

Given:

\frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4}

To find:

Value of x =?

Solution:

To find the value of x, we simplify the following solution:  

\frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4}

\frac{1}{x+1}+\frac{2}{x+2}-\frac{4}{x+4}=0

Taking the LCM of (x+1)(x+2)(x+4) we find the value of the question in simple form:

\frac{(x+2)(x+4)+2(x+1)(x+4)-4(x+1)(x+2)}{(x+1)(x+2)(x+4)}=0

Transferring (x+1)(x+2)(x+4) over to zero to reduce it to zero.

(x+2)(x+4)+2(x+1)(x+4)-4(x+1)(x+2)=0  

Multiplying and subtracting the extra parts

\begin{array}{l}{x^{2}+6 x+8+2 x^{2}+10 x+8=4 x^{2}+12 x+8} \\ {x^{2}-4 x-8=0}\end{array}.

As we can see that the equation cannot be factorize using rational number. Hence the values of the roots are:

\begin{array}{l}{\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}} \\ {x^{2}-4 x-8=0}\end{array}

The value of a = 1, b = -4 and c = -8

\begin{array}{l}{=\frac{-(-4) \pm \sqrt{16-4(1)(-8)}}{2}} \\ {(x-(2+\sqrt{3}))(x+(2-\sqrt{3}))}\end{array}

Therefore, the value of x is  \bold{x=(2 \pm \sqrt{3})}.

Answered by mysticd
397

Answer:

 x=2+2\sqrt{3}\:Or \: x=2-2\sqrt{3}

Step-by-step explanation:

\frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4}

\implies \frac{x+2+2(x+1)}{(x+1)(x+2)}=\frac{4}{x+4}

\implies \frac{x+2+2x+2)}{(x^{2}+3x+2)}=\frac{4}{x+4}

\implies \frac{3x+4}{x^{2}+3x+2}=\frac{4}{x+4}

\implies (3x+4)(x+4)=4(x^{2}+3x+2)

\implies 3x^{2}+12x+4x+16=4x^{2}+12x+8

\implies 3x^{2}+16x+16-4x^{2}-12x-8=0

\implies -x^{2}+4x+8=0

\implies x^{2}-4x-8=0

 Compare \: this \: with \\ax^{2}+bx+c=0,we \:get

a=1,b=-4,x=-8

Discreminant (D)=-4ac

= (-4)²-4×1×(-8)

= 16+32

= 48

 x = \frac{-b±\sqrt{D}}{2a}

=\frac{-(-4)±\sqrt{48}}{2}\\=\frac{4±4\sqrt{3}}{2}\\=2±2\sqrt{3}

\implies x=2+2\sqrt{3}\:Or \: x=2-2\sqrt{3}

Therefore,

 x=2+2\sqrt{3}\:Or \: x=2-2\sqrt{3}

•••♪

Similar questions