Math, asked by username112, 1 year ago

solve for x 1/x-2 + 2/x-1 = 6/x

Answers

Answered by BrainlyNews
13
____________________________________

\large\mathsf{Given \ expression \ -}

\mathsf\red{1/(x - 2) + 2/(x - 1) \ = \ 6/x}

____________________________________

\large\mathsf{On \ solving \ further,}

 \frac{1}{x - 2} + \frac{2}{x - 1} = \frac{6}{x} \\ \\ \\ \frac{1(x - 1) + 2(x - 2)}{(x - 2)(x - 1)} = \frac{6}{x} \\ \\ \\ \frac{x - 1 + 2x - 4}{x(x - 1) - 2(x - 1)} = \frac{6}{x} \\ \\ \\ \frac{3x - 5}{ {x}^{2} - x - 2x + 2 } = \frac{6}{x} \\ \\ \\ \frac{3x - 5}{ {x}^{2} - 3x + 2} = \frac{6}{x} \\

\large\mathsf{Cross \ Multiplication}

x(3x - 5) = 6( {x}^{2} - 3x + 2) \\ \\ \\ 3 {x}^{2} - 5x = 6 {x}^{2} - 18x + 12 \\ \\ \\ 6 {x}^{2} - 3 {x}^{2} - 18x + 5x + 12 = 0 \\ \\ \\ 3 {x}^{2} - 13x + 12 = 0 \\

\large\mathsf{Using \ middle \ term \ factorisation}

3 {x}^{2} - 9x - 4x + 12 = 0 \\ \\ \\ 3x(x - 3) - 4(x - 3) = 0 \\ \\ \\ (3x - 4)(x - 3) = 0 \\ \\ \\ 3x - 4 = 0 \\ \\ And \\ \\ x - 3 = 0 \\ \\ \\ x = \frac{4}{3} \\ \\ And \\ \\ x = 3

\mathsf\red{The \ values \ of \ x \ = \ 4/3 \ and \ 3.}

____________________________________

jaatking83: thank you
Similar questions