Math, asked by rani56347, 2 months ago

Solve for x, 2x +3/x+3=3x+2/x+1​

Answers

Answered by LivetoLearn143
1

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{2x + 3}{x + 3}  = \dfrac{3x + 2}{x + 1}

\rm :\longmapsto\:(2x + 3)(x + 1) = (3x + 2)(x + 3)

\rm :\longmapsto\:2x(x + 1) + 3(x + 1)= 3x(x + 3) + 2(x + 3)

\rm :\longmapsto\: {2x}^{2} + 2x + 3x + 3=  {3x}^{2} + 9x + 2x + 6

\rm :\longmapsto\: {2x}^{2} + 5x + 3 =  {3x}^{2} +11x + 6

\rm :\longmapsto\: {2x}^{2} + 5x + 3 -   {3x}^{2}  - 11x  -  6 = 0

\rm :\longmapsto\: -  {x}^{2}  - 6x - 3 = 0

\rm :\longmapsto\: -  ({x}^{2}  +  6x  + 3) = 0

\rm :\longmapsto\: {x}^{2}  +  6x  + 3 = 0

Its a quadratic equation, whose solution is given by

\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

Here,

a = 1

b = 6

c = 3

On substituting the values,

\rm :\longmapsto\:x = \dfrac{ - 6 \:  \pm \:  \sqrt{ {6}^{2}  - 4(1)(3)} }{2(1)}

\rm :\longmapsto\:x = \dfrac{ - 6 \:  \pm \:  \sqrt{ 36 - 12 }}{2}

\rm :\longmapsto\:x = \dfrac{ - 6 \:  \pm \:  \sqrt{ 24 }}{2}

\rm :\longmapsto\:x = \dfrac{ - 6 \:  \pm \:  \sqrt{2 \times 2 \times 6 }}{2}

\rm :\longmapsto\:x = \dfrac{ - 6 \:  \pm \:  2\sqrt{ 6}}{2}

\rm :\longmapsto\:x =  - 3 \:  \pm \:  \sqrt{6}

Similar questions