Solve for x: (2x/x-5)²+(2x/x-5)-24=0 , x≠5
Answers
x = 5 (√97 + 1)/(√97 + 5), 5 (√97 - 1)/(√97 - 5)
Step-by-step explanation:
The given equation is
{2x/(x - 5)}² + 2x/(x - 5) - 24 = 0, where x ≠ 5
or, a² + a - 24 = 0, where 2x/(x - 5) = 0
or, a² + (2 * a * 1/2) + (1/2)² - 24 - (1/2)² = 0
or, (a + 1/2)² - (24 + 1/4) = 0
or, (a + 1/2)² - {(√97)/2}² = 0
or, {a + 1/2 + (√97)/2} {a + 1/2 - (√97)/2} = 0
Either a + 1/2 + (√97)/2 = 0 or, a + 1/2 - (√97/2) = 0
Taking the first value of a, we get
2x/(x - 5) + 1/2 + (√97)/2 = 0
or, 2x/(x - 5) = - 1/2 * (1 + √97)
or, 4x = - (1 + √97) (x - 5)
or, (4 + 1 + √97)x = 5 (1 + √97)
or, x = 5 (√97 + 1)/(√97 + 5)
Again taking the second value of a, we get
2x/(x - 5) + 1/2 - (√97)/2 = 0
or, 2x/(x - 5) = - 1/2 * (1 - √97)
or, 4x = - (1 - √97) (x - 5)
or, (4 + 1 - √97)x = 5 (1 - √97)
or, x = 5 (√97 - 1)/(√97 - 5)
Therefore the required solution is
x = 5 (√97 + 1)/(√97 + 5), 5 (√97 - 1)/(√97 - 5)
Note: If you can want, you may rationalise the denominators.
Related question here:
Solve the following quadratic equation x² -7x + 3 = 0. Give your answer correct to two decimal places. - https://brainly.in/question/15750559
Step-by-step explanation:
above is correct ...
.......