Math, asked by acchu20, 1 year ago

solve for x: 4x^2-4a^2x+(a^4-b^4)=0

Attachments:

Answers

Answered by Zaransha
16
Here we go buddy,

4 {x}^{2}  - 4 {a}^{2} x + ( {a}^{4} -  {b}^{4}  )  \\ \\ 4 {x}^{2}  - 4 {a}^{2} x + ( {a}^{2} -  {b}^{2} )( {a}^{2}   +  {b}^{2} ) \\  \\ 4 {x}^{2}  - 2( {a}^{2}  -  {b}^{2} )x - 2( {a}^{2}  +  {b}^{2} ) x+ ( {a}^{2} -  {b}^{2} )( {a}^{2}   +  {b}^{2} ) \\  \\ 2x(2x - ( {a}^{2} -  {b}^{2}  )) - ( {a}^{2}  +  {b}^{2})(2x - (  {a}^{2}  -  {b}^{2} )) \\  \\ (2x - ( {a}^{2}  +  {b}^{2} ))(2x - ( {a}^{2}  -  {b}^{2} ))
From here,

2x - ( {a}^{2}  +  {b}^{2} ) = 0 \\ 2x = ( {a}^{2}  +  {b}^{2})  \\ x =  \frac{( {a}^{2} +  {b}^{2}  )}{2}

Or

2x - ( {a}^{2}   -   {b}^{2} ) = 0 \\ 2x = ( {a}^{2}   -   {b}^{2})  \\ x =  \frac{( {a}^{2}  -   {b}^{2}  )}{2}
Similar questions