Math, asked by jayantasingha803, 11 months ago

solve for X and Y : 2^x+1 = (√32)^y and 81^4-x/2 - 27^y = 0

Answers

Answered by trixy123
14

Answer:

x=37/8, y=18/8=9/4

Step-by-step explanation:

2^{x+1}=\sqrt{32}^y\\2^{x+1}=2^{\frac{5}{2} *y}\\log_2(2^{x+1})=log_2(2^\frac{5y}{2} )\\x+1=5y/2\\2x+2=5y......................(i)\\\\81^{4-\frac{x}{2} }-27^y=0\\(3^4)^{4-\frac{x}{2} }=(3^3)^y\\log_3(3^{16-2x})=log_3(3^{3y})\\16-2x=3y...........(ii)

Adding (i) and (ii),

2x+2+16-2x=5y+3y\\8y=18\\y=\frac{18}{8}\\ \\x=\frac{5y-2}{2} =\frac{5(\frac{18}{8} )-2}{8}\\ =\frac{37}{8}

Answered by shampa2481990
0

this is my answer hope it will help you

And if this answer helps you then don't forget to mark me as brainliest

Bye

Attachments:
Similar questions