Math, asked by ananyajaiswal74, 9 months ago

solve for x and y .​

Attachments:

Answers

Answered by amansharma264
8

ANSWER.

=> x = ½ and y = 5/4

EXPLANATION.

 \sf \to \:  \dfrac{1}{2(x + 2y)}  +  \dfrac{5}{3(3x - 2y)}  =  \dfrac{ - 3}{2}  \\  \\  \sf \to \:  \dfrac{5}{4(x + 2y)}  -  \dfrac{3}{5(3x - 2y)}  =  \dfrac{61}{60}

 \sf \to \: let \: we \: assume \: that \\  \\  \sf \to \:  \frac{1}{ {(x + 2y)}}  = a \:  \:  \:  \: and \:  \:  \:  \dfrac{1}{(3x - 2y)}  = b

 \sf \to \:  \dfrac{a}{2}  +  \dfrac{5b}{3}  =  \dfrac{ - 3}{2}  \\  \\  \sf \to \:  \frac{3a + 10b}{ \cancel{6}}  =  \frac{ - 3}{ \cancel{2}}  \\  \\  \sf \to \: 3a + 10b \:  =  - 9 \: ......(1)

 \sf \to \:  \dfrac{5a}{4}  -  \dfrac{3b}{5}  =  \dfrac{61}{60}  \\  \\  \sf \to \:  \dfrac{25a - 12b}{ \cancel{20}}  =  \frac{61}{ \cancel{60}}  \\  \\  \sf \to \: 75a - 36b \:  = 61 \: .......(2)

 \sf \to \: from \: equation \: (1) \: and \: (2) \: we \: get

 \sf \to \: multiply \: equation \: (1) \: by \: 36 \\  \\  \sf \to \: multiply \: equation \: (2) \: by \: 10

 \sf \to \: we \: get \\  \\  \sf \to \: 108a + 360b \:  =  - 324....(1) \\  \\  \sf \to \: 750a  - 360b \:  = 610.......(2) \\  \\  \sf \to \: we \: get \\  \\  \sf \to \: 858a = 286 \\  \\  \sf \to \: a \:  =  \dfrac{1}{3}  \\  \\  \sf \to \: put \: the \: value \: of \: a \:  =  \dfrac{1}{3} \: in \: equation \: (1) \\  \\  \sf \to \: we \: get \\  \\  \sf \to \:  \cancel{3} \times  \dfrac{1}{ \cancel{3}}  + 10b =  - 9 \\  \\  \sf \to 10b \:  =  - 10 \\  \\  \sf \to \: b \:  =  - 1

 \sf \to \: as \: we \: can \: assume \: that \\  \\  \sf \to \:  \dfrac{1}{x + 2y}  = a  \implies \: \dfrac{1}{x + 2y} =  \dfrac{1}{3}  \\  \\  \sf \to \:  \dfrac{1}{3x - 2y} = \: b \implies \:  \dfrac{1}{3x - 2y}   =  \dfrac{ - 1}{1}

 \sf \to \: x \:  + 2y = 3 \: .....(3) \\  \\  \\  \sf \to \:  - 3x + 2y = 1 \: .....(4) \\  \\  \sf \to \: we \: get \:  \\  \\  \sf \to \: multiply \: equation \: (3) \: by \: 3 \\  \\  \sf \to \: multiply \: equation \: (4) \: by \: 1 \\  \\  \sf \to \:   +  3x + 6y = 9 \\  \\  \sf \to \:  - 3x + 2y = 1 \\  \\  \sf \to \: 8y = 10 \implies \: y \:  =  \dfrac{5}{4}  \\  \\  \sf \to \: put \: y \:  =  \frac{5}{4} in \: equation \: (3) \: we \: get \:  \\  \\  \sf \to \: x + 2 \times  \frac{5}{4}  = 3 \\  \\  \sf \to \: x +  \dfrac{5}{2}  = 3 \\  \\  \sf \to \: x \:  = 3 -  \dfrac{5}{2}  \\  \\  \sf \to \: x \:  =  \dfrac{1}{2}  \\  \\  \sf \to \:  \green{{ \underline{value \: of \: x \:  =  \dfrac{1}{2} \: and \: y \:  =  \dfrac{5}{4}  }}}

Similar questions