solve for x and y: (a-b)x+(a+b)y=a^2-2ab-b^2 (a+b)(x+y)=a^2+b^2
Answers
Answered by
4
ANSWER:
- Value of x is (a+b)
- Value of y is -2ab/(a+b)
GIVEN:
- (a-b)x+(a+b)y = a²-2ab-b²
- (a+b)(x+y) = a²+b²
TO FIND:
- Value of x and y.
SOLUTION:
=> (a-b)x+(a+b)y = a²-2ab-b² .....(i)
=> (a+b)(x+y) = a²+b²
=> (a+b)x+(a+b)y = a²+b² .....(ii)
Subtracting eq (i) from (ii)
=> (a+b)x-(a-b)x = a²+b² -(a²-2ab-b²)
=> (a+b)x -(a-b)x = a²+b²-a²+2ab+b²
=> ax+bx-ax+bx = 2b²+2ab
=> 2bx = 2b(a+b)
=> x = (a+b)
Putting x = (a+b) in eq(i)
=> (a-b)(a+b)+(a+b)y = a²-2ab-b²
=> a²-b²+(a+b)y = a²-2ab-b²
=> (a+b)y = -2ab
=> y = -2ab/(a+b)
Value of x is (a+b)
Value of y is -2ab/(a+b)
Similar questions