Solve for x and y:
a(x+y) +b(x-y) = a^2 – ab + b^2
a(x+y) – b(x-y) = a^2 + ab + b^2
Answers
Answer:
(1) bx + cy = a + b, ax[1/(a-b) - 1/(a+b)] + cy[1/(b-a) - 1/(b+a)] = 2a/(a+b)
ax[1/(a-b) - 1/(a+b)] + cy[1/(b-a) - 1/(b+a)] = 2a / (a+b)
⇒ ax[(a + b - a + b)/(a2 - b2)] + cy[(b + a - b + a) /(b2 - a2)] = 2a / (a+b)
⇒ 2abx / (a2 - b2) + 2acy / (b2 - a2) = 2a / (a+b)
⇒ bx / (a2 - b2) + cy / (b2 - a2) = 1 / (a+b)
⇒ bx / (a2 - b2) - cy / (a2 - b2) = 1 / (a+b)
⇒ bx / (a - b) - cy / (a - b) = 1
⇒ (bx - cy) / (a - b) = 1
⇒ (bx - cy) = (a - b)
Consider the equations bx + cy - (a + b) = 0 and bx - cy - (a - b) = 0.
Solution of the equations using cross multiplication method:
a1 = b, b1 = c, c1 = -(a + b)
a2 = b, b2 = - c, c2 = -(a - b)
,
x = -c(a - b) - c(a + b) / (-bc - bc), y = -b(a + b) + b(a - b) / (-bc - bc)
x = a/b, y = b/c.
2) (a-b)x + (a+b)y = 2a2 - 2b2, (a+b)(x+y) = 4ab
(a-b)x + (a+b)y - (2a2 - 2b2) = 0, (a+b)x + (a + b)y - 4ab = 0
Solution of the equations using cross multiplication method:
a1 = (a-b), b1 = (a+b), c1 = - (2a2 - 2b2)
a2 = (a+b), b2 = (a+b), c2 = - 4ab
Using the formula to get the values of x and y.
x = (a2 - b2 - 2ab) / (-b), y = (a - b)(a2 - b2) / b(b + a). HOPE IT HELPS U..