Math, asked by aditibhasin8, 9 months ago

solve for x and y. ax+by=3ab a²x+b²y=a+b Guys here is the question again and plzzzz ans it​

Answers

Answered by Anonymous
3

ax + by = 3ab...(i)

 {a}^{2} x +  {b}^{2} y = a + b...(ii)

y =  \frac{a(3b - x)}{b} ...from(i)

substitute \: the \: value \: of \: x \: in \: (ii) \: we \: get \:

 {a}^{2} x +  {b}^{2}  \frac{a(3b - x)}{b }  = a + b

 {a}^{2} x + 3a {b}^{2}  - abx = a + b

x =  \frac{a + b - 3a {b}^{2} }{ {a}^{2 -}ab }

therefore \: y =  \frac{a(3b - x)}{b}

 =  \frac{a(3b - \times \frac{a + b - 3a {b}^{2} }{ {a}^{2}  - ab} )}{b}

 =  \frac{(3 {a}^{2} b - 3a {b}^{2} - a - b + 3a {b}^{2}  )}{b (a - b)}

 =  \frac{3 {a}^{2} b - a - b}{b(a - b)}

I HOPE IT HELPS. ☺FOLLOW ME ✌

Answered by aashritaarora7
0

Step-by-step explanation:

ax+by=3ab...(i)

{a}^{2} x + {b}^{2} y = a + b...(ii)a

2

x+b

2

y=a+b...(ii)

y = \frac{a(3b - x)}{b} ...from(i)y=

b

a(3b−x)

...from(i)

substitute \: the \: value \: of \: x \: in \: (ii) \: we \: get \:substitutethevalueofxin(ii)weget

{a}^{2} x + {b}^{2} \frac{a(3b - x)}{b } = a + ba

2

x+b

2

b

a(3b−x)

=a+b

{a}^{2} x + 3a {b}^{2} - abx = a + ba

2

x+3ab

2

−abx=a+b

x = \frac{a + b - 3a {b}^{2} }{ {a}^{2 -}ab }x=

a

2−

ab

a+b−3ab

2

therefore \: y = \frac{a(3b - x)}{b}thereforey=

b

a(3b−x)

= \frac{a(3b - \times \frac{a + b - 3a {b}^{2} }{ {a}^{2} - ab} )}{b}=

b

a(3b−×

a

2

−ab

a+b−3ab

2

)

= \frac{(3 {a}^{2} b - 3a {b}^{2} - a - b + 3a {b}^{2} )}{b (a - b)}=

b(a−b)

(3a

2

b−3ab

2

−a−b+3ab

2

)

= \frac{3 {a}^{2} b - a - b}{b(a - b)}=

b(a−b)

3a

2

b−a−b

Similar questions