Math, asked by spk250159, 8 months ago

solve for x and y :
{ \frac{ax}{b}  -  \frac{by}{a}  = a + b }
and
ax - by = 2ab
First answer will be marked as brainliest

Answers

Answered by BRAINLYADDICTOR
57

★Given,

\bold{ax/b-by/a=a+b... EQ1}

\bold{ax-by=2ab.... EQ2}

★SOLUTION:

\bold{By\:cross\: multiplying\: EQ1\: and \:EQ2}

\bold{........X...........Y................1}

\bold{-b/a......-(a+b)..... a/b.....- b/a}

\bold{-b......... -2ab......... a........ - b}

\bold{X/-b/a(-2ab)-(-b)(-(a+b))=Y/-(a+b)(a)-(-2ab)(a/b)=1/a/b(-b)-a(-b/a)}

\bold{X/2b^2-ab-b^2=Y/-a^2-ab+2a^2=1/-a+b}

\bold{X/b^2-ab=Y/a^2-ab=1/-a+b}

\bold{X/b(b-a)=Y/a(a-b)=1/-a+b}

\bold{X/b(b-a)=Y/-a(b-a)=1/b-a}

\bold{X/b=Y/-a=1}

\bold{X/b=1, Y/-a=1}

\bold{X=b. Y=-a}

★ANSWER:

➡️\bold{(X,Y)=(b,-a)}

Answered by aadishree7667
9

✌✌ hello dued your answer✌✌

Attachments:
Similar questions