Math, asked by kinda002, 4 months ago

solve for x and y , x-1 / x-2 + x-3 / x-4 = 10/3.​

Answers

Answered by Anonymous
1

\rm{ \dfrac{x - 1}{x - 2} + \dfrac{x - 3}{x - 4} = \dfrac{10}{3} }

x−2

x−1

+

x−4

x−3

=

3

10

Required Answer:-

For solving for x, we have to take the LCM i.e. (x - 2)(x -4). Then,

⇒ \rm{ \dfrac{(x - 1)(x - 4) + (x - 3)(x - 2)}{(x - 2)(x - 4)} = \dfrac{10}{3} }

(x−2)(x−4)

(x−1)(x−4)+(x−3)(x−2)

=

3

10

Cross multiplying for easier calculation:

⇒ \rm{3 \{(x - 1)(x - 4) + (x - 3)(x - 2) \}= 10(x - 2)( - 4)}3{(x−1)(x−4)+(x−3)(x−2)}=10(x−2)(−4)

Multiplying the terms inside the curly brackets:

⇒ \rm3 {\{ {x}^{2} - 5x + 4 + {x}^{2} - 5x + 6 \} = 10( {x}^{2} - 6x + 8}3{x

2

−5x+4+x

2

−5x+6}=10(x

2

−6x+8

Opening the parentheses,

⇒ \rm{3(2 {x}^{2} - 10x + 10) = 10{x}^{2} - 60x + 80}3(2x

2

−10x+10)=10x

2

−60x+80

⇒ \rm{6 {x}^{2} - 30x + 30 = 10 {x}^{2} - 60x + 80}6x

2

−30x+30=10x

2

−60x+80

Taking 2 as a common from both sides & cancelling it, we have,

⇒ \rm{3{x}^{2} - 15x+15 = 5{x}^2 - 30x+40}3x

2

−15x+15=5x

2

−30x+40

Now shifting the terms to one side of the equation:

⇒ \rm{5{x}^2 - 3{x}^2 - 30x+15x+40 - 15=0}5x

2

−3x

2

−30x+15x+40−15=0

⇒ \rm{2x^2 -15x+25=0}2x

2

−15x+25=0

Now find the possible values of x by Middle term factorisation,

⇒ \rm{2x^2 -10x-5x+25=0}2x

2

−10x−5x+25=0

⇒ \rm{2x(x - 5) -5(x-5) =0}2x(x−5)−5(x−5)=0

⇒ \rm{(2x-5)(x-5)=0}(2x−5)(x−5)=0

Equating to 0, We get

⇒ \rm{x = \dfrac{5}{2} \: or \: 5}x=

2

5

or5

Hence:-

The value of x after solving: 5/2 or 5

Answered by Ᏸυէէєɾϝɭყ
27

Answer:

refer to the attachment

Attachments:
Similar questions