English, asked by ritesh8858, 1 year ago

solve for x correctly​

Attachments:

Answers

Answered by AmritRaaj
5

please like my answer thank and give brainliest remark

Attachments:
Answered by Anonymous
29

QUESTION

Solve for x :  \frac{a}{ax - 1}  +  \frac{b}{bx - 1}  = a + b

Where , x \neq \:  \frac{1}{a}  \:  \:  \frac{1}{b}

SOLUTION

 \:  \:  \:  \:  \:  \:  \frac{a}{ax - 1}  +  \frac{b}{bx - 1}  = a + b \\  \\  \\  =  >  \frac{a}{ax - 1}  - b = a -  \frac{b}{bx - 1}  \\  \\  \\  =  >  \frac{a - abx + b}{ax - 1}  =  \frac{abx - a - b}{bx - 1}  \\  \\  \\  =  > (a - abx + b)(bx - 1) = (abx - a - b)(ax - 1) \\  \\  \\  =  >  \frac{a - abx + b}{abx - a-b }  =  \frac{ax - 1}{bx - 1}  \\  \\  \\  =  >  \frac{a + b - abx}{ - (a + b - abx) }  =  \frac{ax - 1}{bx - 1}  \\  \\  \\  =  >  - 1 =  \frac{ax - 1}{bx - 1}  \\  \\  \\  =  > ax - 1 = ( - 1) \times (bx - 1) \\  \\  \\  =  > ax - 1 =  - bx + 1 \\  \\  \\  =  > ax + bx = 1 + 1 \\  \\  \\  =  > x(a + b) = 2 \\  \\  \\  =  > x =  \frac{2}{a + b}

ANSWER  \underline  { \:  \:  \: \boxed{ \boxed{ \:  \:  \: x =  \frac{2}{a + b} }} \:  \:  \:  \: }


Anonymous: hey Don't delete my right ans
Davidprem: is it correct ans???
Similar questions