Math, asked by sudhanshu1605, 1 year ago

solve for x if 3 ^x-1 =1/27

Answers

Answered by TPS
162

 {3}^{(x - 1)}  =  \frac{1}{27}  \\  \\ {3}^{(x - 1)}  =  \frac{1}{ {3}^{3} }  \\  \\  {3}^{(x - 1)}  =  {3}^{ - 3}   \\  \\  \text{comparing powers of 3 on both sides} \\  \\ x - 1 =  - 3 \\  \\ x =  - 3 + 1 \\  \\  \boxed{ \large{x =  - 2}}
Answered by parulsehgal06
2

Answer:

The value of x = -2.

Step-by-step explanation:

Bases and Exponents:

  • Base number is defined as a number which is multiplied by itself, whereas the exponent represents the number of times the base number is multiplied.
  • In short, Power is a number expressed using the exponents. It implies the repeated multiplication of the same factor.

       Given equation is

                   (3)^x-1 = 1/27

      we will convert the above equation in R.H.S in terms of power of 3.

                   (3)^x-1 = 1/((3)^3)

                   (3)^x-1 = (3)^-3

      By powers and exponents rule,

      If bases are equal then exponents are equal.

                        x-1 = -3

                          x = -3+1

                          x = -2

          Hence the value of x = -2.

Know more about Solving Algebraic equations:

https://brainly.in/question/21098904?referrer=searchResults

   

Similar questions