Math, asked by abhay191, 1 year ago

solve for x if possible (m2+n2)x2+(m+n)x+1/2 =0

Answers

Answered by Anonymous
27
Hey !!

Check the attachment.
As you can see , the above expression has complex roots.
Hope it helps you :)
Attachments:
Answered by pinquancaro
5

Answer:

x_1=\frac{-(m+n)+(m-n)i}{2(m^2+n^2)}

x_2=\frac{-(m+n)-(m-n)i}{2(m^2+n^2)}         

Step-by-step explanation:

Given : Expression (m^2+n^2)x^2+(m+n)x+\frac{1}{2}=0

To find : Solve for x?

Solution :

Applying quadratic formula of quadratic equation ax^2+bx+c=0

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

On comparing with given expression,

a=(m^2+n^2), b=(m+n), c=\frac{1}{2}

Substitute the value in the formula,

x=\frac{-(m+n)\pm\sqrt{(m+n)^2-4(m^2+n^2)(\frac{1}{2})}}{2(m^2+n^2)}

x=\frac{-(m+n)\pm\sqrt{-(m^2+n^2-2mn)}}{2(m^2+n^2)}

x=\frac{-(m+n)\pm\sqrt{-(m-n)^2)}}{2(m^2+n^2)}

x=\frac{-(m+n)\pm(m-n)i}{2(m^2+n^2)}

The solution for x are

x_1=\frac{-(m+n)+(m-n)i}{2(m^2+n^2)}

x_2=\frac{-(m+n)-(m-n)i}{2(m^2+n^2)}

Similar questions