Math, asked by adityasinghgahp68ejz, 1 year ago

solve for x, log e (x-a)+logex=1 (e is on the base)

Answers

Answered by JinKazama1
15
Final Answer :
x :
x =  \frac{a +  \sqrt{ {a}^{2} + 4e } }{2}

Steps :
1)
 \:  ln(x - a)  +  ln(x)  = 1 \\  \: \: domain \:  = x > a \:  \:  \: and \:  \: x > 0
 ln(x \times( x - a))  = 1 \\  =  > x \times (x - a) =  {e}^{1}  \\  =  >  {x}^{2}  - ax - e = 0 \\  =  > x =  \frac{a +  \sqrt{ {a}^{2} + 4e } }{2}  \:  \: \\  or \: x \:  =  \frac{a -  \sqrt{ {a}^{2} + 4e } }{2}
2) We will reject second part of solution as x > a.
3 ) So, Finally


x =  \frac{a +  \sqrt{ {a}^{2}  + 4e} }{2}


Similar questions