Math, asked by shikhadhiman961, 1 year ago

solve for x:- logx(8x-3)-logx4=2​


Swarup1998: x is base, right?
shikhadhiman961: yeah
Swarup1998: okay... give me some time to solve
shikhadhiman961: ok
shikhadhiman961: i don't understand
shikhadhiman961: how did u solve it
Swarup1998: Solved! :-)

Answers

Answered by Swarup1998
9

Solution :

\displaystyle \mathrm{log_{x}(8x-3)-log_{x}4=2}

\displaystyle \implies \mathrm{log_{x}\frac{8x-3}{4}=2}

Taking powers to x, we get

\displaystyle \implies \mathrm{x^{(log_{x}\frac{8x-3}{4})}=x^{2}}

\displaystyle\implies \mathrm{\frac{8x-3}{4}=x^{2}}

\displaystyle\implies \mathrm{4x^{2}=8x-3}

\displaystyle\implies \mathrm{4x^{2}-8x+3=0}

\displaystyle\implies \mathrm{4x^{2}-6x-2x+3=0}

\displaystyle\implies \mathrm{2x(2x-3)-1(2x-3)=0}

\displaystyle\implies \mathrm{(2x-3)(2x-1)=0}

Either \displaystyle \mathrm{2x - 3 = 0} or, \displaystyle \mathrm{2x - 1 = 0}

\displaystyle \implies\boxed{\mathrm{x = \frac{3}{2}\:\,\:,\:\,\:\frac{1}{2}}}

which be the required solution

Rule :

\displaystyle \mathrm{a^{(log_{a}b)}=b}


Swarup1998: :-)
shikhadhiman961: i got it ...thanks
Similar questions
Math, 7 months ago