Math, asked by shalini683, 1 year ago

Solve for x

Please explain

I will mark you as brainlist

Please answer it very fast

Attachments:

Answers

Answered by Anonymous
15

\underline{\large{\mathfrak{Solution : }}}


 \mathsf{ \implies {3}^{  \normalsize{(4x \:  +  \: 1)}} \:  =  \:  \left( \dfrac{1}{9} \right)^{ \normalsize{x \:  +  \: 1}  }} \\  \\  \mathsf{ \implies  {3}^{  \normalsize{(4x \:  +  \: 1)}} \:  =  \:   \left( \dfrac{1}{ {3}^{2} } \right)^{ \normalsize{x \:  +  \: 1}} }



\underline{\underline{\mathsf{Using \: algebraic \: identity : }}} \\ \\<br /><br />\boxed{\mathsf{\implies \dfrac{1}{a^{m}}  \: = \: {a}^{ \normalsize{( - m)}}}}<br /><br />


 \mathsf{ \implies {3}^{ \normalsize{(4x \:  +  \: 1)}} \:  =  \:    \left[3^{ \normalsize{(-2)}} \right]^{\normalsize{(x \: + \: 1)} }}



\underline{\underline{\mathsf{Using \: algebraic \: identity : }}} \\ \\<br /><br />\boxed{\mathsf{\implies (a^{ \normalsize{m}})^{ \normalsize{n}} \: = \: a^{ \normalsize{mn}}}}<br />



\mathsf{\implies 3^{\normalsize{(4x \: + \: 1)}} \: = \: 3^{\normalsize{(-2x \: - \: 2)}}}



\underline{\underline{\textsf{On \: Comparison : }}}<br /> \\  \\ <br /><br />\mathsf{\implies 4x \: + \: 1 \: = \: - 2x \: - \: 2 } \\ \\<br /><br />\mathsf{\implies 4x \: + \: 2x \: = \: -2 \: - \: 1} \\ \\<br /><br />\mathsf{\implies 6x \: = \: -3 } \\ \\<br /><br />\mathsf{\implies x \: = \: \dfrac{-3}{6}} \\ \\<br /><br />\mathsf{\implies x \: = \: \dfrac{-1}{2}}<br /><br />



\boxed{\underline{\underline{\large{\mathsf{ The \: value \: of \: x \: is \: \dfrac{-1}{2}.}}}}}

crystinia: Awesome!
Anonymous: Thanks !
dikshaverma4you: Well done, Keep it up ^_^
Anonymous: Thanks Didu !
Answered by Inflameroftheancient
14

Hey there!

Given equation to us \bf{3^{4x + 1} = (\frac{1}{9})^{x + 1}} \\

Converting the fractional value of \bf{(\frac{1}{9})^{x + 1}} \\ to the base of value "3" into denominator by power to negative value of "2" that is,

\bf{(\frac{1}{9})^{x + 1} = (\frac{1}{3^2})^{x + 1}) = (3^{- 2})^{x + 1}} \\

\bf{3^{4x + 1} = (3^{- 2})^{x + 1}} \\

Applying the rule of exponential powers that is:

\bf{(a^b)^c = a^{b \times c}} \\.

Here,

\bf{(3^{- 2})^{x + 1} = 3^{- 2(x + 1)}} \\

Therefore,

\bf{3^{4x + 1} = 3^{- 2(x + 1)}} \\

Now, apply the function powering rule to cancel out similar bases to obtain the equation values that is,

\bf{a^{f(x)} = a^{g(x)}, \: \: then \qquad f(x) = g(x)} \\

Therefore,

\bf{4x + 1 = - 2(x + 1)}

Now, solve this equation for finding exact value for variable "x":

Expand this equation of  - 2(x + 1) by applying the principles of distributive law that is,  

a(b + c) = ab + ac,    Here,       a = -2,  b = x  and  c = 1.

And apply the basic "plus-minus rules" that is,    +(- a) = - a  and Multiply the numbers:

\bf{4x + 1 = - 2x - 2}

Subtracting the value of "1" from both the provided sides to us, we get; By Simplification:

\bf{4x + 1 - 1 = - 2x - 2 - 1}

\bf{4x = - 2x - 3}

Adding the variable joined value of "2x" to both the sides:

\bf{4x + 2x = - 2x - 3 + 2x}

Simplify the equation;

\bf{6x = - 3}

Divide both the following sides with the value of "6" and simplify the equation:

\bf{\dfrac{6x}{6} = \dfrac{- 3}{6}} \\

\bf{x = \dfrac{- 3}{6}} \\

Apply the rule of fractional shifting of negative sign and cancel out the common factor of "3";

Therefore the final value and the required answer becomes:

\boxed{\bf{x = - \dfrac{1}{2}}} \\

Which is the required solution for this type of query.

Hope this helps you and solves your doubts for this query to find the variable values!



TheUrvashi: Awesome
Inflameroftheancient: Thnx
Anonymous: Superb answer !
Inflameroftheancient: Thnx bro
dikshaverma4you: Great answer. :)
Inflameroftheancient: Thanks diksha sister! :)
Similar questions