Math, asked by vikassingh26, 1 month ago

solve for x... please give solution in detail​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \frac{(x - 1)(x - 2)(x - 3)}{(x + 1)(x + 2)(x + 3)}  > 1 \\

 \implies \frac{(x - 1)(x - 2)(x - 3)}{(x + 1)(x + 2)(x + 3)}   -  1 > 0 \\

 \implies \frac{(x - 1)(x - 2)(x - 3) - (x  + 1)(x + 2)(x + 3)}{(x + 1)(x + 2)(x + 3)}   > 0 \\

 \implies \frac{(x^{2}  - 3x  + 2)(x - 3) - (x^{2}  + 3x + 2)(x + 3)}{(x + 1)(x + 2)(x + 3)}   > 0 \\

 \implies \frac{(x^{3}  - 3x^{2}   + 2x - 3 {x}^{2} + 9x - 6 ) - ( {x}^{3}  + 3 {x}^{2}  + 2x + 3 {x}^{2}  + 9x + 6)}{(x + 1)(x + 2)(x + 3)}   > 0 \\

 \implies \frac{(x^{3}  - 6x^{2}   + 11x - 6 ) - ( {x}^{3}  + 6 {x}^{2}  + 11x + 6)}{(x + 1)(x + 2)(x + 3)}   > 0 \\

 \implies \frac{x^{3}  - 6x^{2}   + 11x - 6  - {x}^{3}   - 6 {x}^{2}    - 11x  -  6}{(x + 1)(x + 2)(x + 3)}   > 0 \\

 \implies \frac{  - 6x^{2}  - 6    - 6 {x}^{2}     -  6}{(x + 1)(x + 2)(x + 3)}   > 0 \\

 \implies \frac{  - 12x^{2}  - 12   }{(x + 1)(x + 2)(x + 3)}   > 0 \\

 \implies \frac{  - 12(x^{2}   + 1)  }{(x + 1)(x + 2)(x + 3)}   > 0 \\

 \implies \frac{ (x^{2}   + 1)  }{(x + 1)(x + 2)(x + 3)}    <  0 \\

Since,  x^2+1 is always positive,

so,

 \implies (x + 1)(x + 2)(x + 3)   <  0 \\

 \implies\:x\in(-\infty, -3)\:\cup\:(-2,-1)

Similar questions