solve for x: sinx + sin3x + sin5x = 0
Answers
Answered by
2
•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°
sin x + sin 3x + sin 5x = 0
(sin x + sin 5x) + sin 3x = 0
Hence,
Sin 3x = 0 -----(1)
2 cos 2x + 1 = 0
=> 2 cos 2x = -1
=> ----(2)
Now,
Find general solution of (1) & (2) separately
¶¶¶ General Solution of sin 3x = 0
sin 3x = 0
¶sin kx = 0 => kx = nΠ
=> where n£Z
•°• 3x = nΠ => x =
where n£Z
¶¶¶ General solution of Cos 2x =
Let cos x = cos y
=> cos 2x = cos 2y --------(3)
Given,
cos 2x = ------(4)
From (3)&(4)
cos 2y =
cos 2y =cos
=> 2y =
General solution for cos 2x = cos 2y is
2x = 2nΠ (+-) 2y where n£Z
=> 2x = 2nΠ (+-)
=> x = (2nΠ (+-)
=> x = [ (+-)
=> x = nΠ (+-)
where n£Z
Hence,
General Solution is
For sin x = 0 , x =
For cos 2x = , x = nΠ (+-)
where n£Z
•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°
¶¶¶ Identities Used :
•
•
^^ Also note :
•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°
Similar questions