Math, asked by Basantarana, 1 year ago

solve for x: sinx + sin3x + sin5x = 0

Answers

Answered by VemugantiRahul
2
\mathfrak{\huge{\pink{\underline{\blue{Hola\: !}}}}}

\mathfrac{\underline{\red{SOLUTION:}}}

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°

sin x + sin 3x + sin 5x = 0
(sin x + sin 5x) + sin 3x = 0

[2 sin (\frac{x+5x}{2}). cos (\frac{x-5x}{2} )] + sin 3x = 0

(2 sin \frac{6x}{2}. cos \frac{-4x}{2}) + sin 3x = 0

(2 sin 3x. cos(-2x)) + sin 3x = 0

(sin 3x. cos 2x)+ sin 3x = 0

 sin 3x(2cos 2x + 1) = 0

Hence,
Sin 3x = 0 -----(1)

2 cos 2x + 1 = 0
=> 2 cos 2x = -1
=> cos 2x = \frac{-1}{2} ----(2)

Now,
Find general solution of (1) & (2) separately

¶¶¶ General Solution of sin 3x = 0

sin 3x = 0

¶sin kx = 0 => kx = nΠ
=> x = \frac{nΠ}{k} where n£Z

•°• 3x = nΠ => x = \frac{nΠ}{3}
where n£Z

¶¶¶ General solution of Cos 2x =\frac{-1}{2}

Let cos x = cos y
=> cos 2x = cos 2y --------(3)

Given,
cos 2x = \frac{-1}{2} ------(4)

From (3)&(4)
cos 2y = \frac{-1}{2}

cos 2y =cos \frac{2Π}{3}

=> 2y = \frac{2Π}{3}

General solution for cos 2x = cos 2y is
2x = 2nΠ (+-) 2y where n£Z

=> 2x = 2nΠ (+-) \frac{2Π}{3}

=> x = \frac{1}{2}(2nΠ (+-) \frac{2Π}{3})

=> x = [\frac{2nΠ}{2} (+-) \frac{1}{2}] × \frac{Π}{3}

=> x = nΠ (+-) \frac{Π}{3}
where n£Z

Hence,
General Solution is
For sin x = 0 , x =\frac{nΠ}{3}
For cos 2x = \frac{-1}{2}, x = nΠ (+-) \frac{Π}{3}

where n£Z

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°

¶¶¶ Identities Used :


sin C + sin D = 2 sin (\frac{C + D}{2}) cos (\frac{C + D}{2})

 cos(-x) = cos x

^^ Also note :
cos \frac{-1}{2} = cos \frac{2Π}{3}

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°

\mathfrak{\huge{\pink{Cheers}}}

\mathfrak{\huge{\orange{Hope\: it\: helps}}}
Similar questions