Math, asked by pradnyanimgade, 9 months ago

solve for X? solve this​

Attachments:

Answers

Answered by CharmingPrince
45

\huge{ \green{ \mathfrak{ \underline{Answer}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\boxed{\red{\bold{Solving\:powers:}}}

\displaystyle{\left( \sqrt[3]{\frac{3}{5}} \right)^{2x+1}= \frac{125}{27}}

\displaystyle{\left( \sqrt[3]{\frac{3}{5}} \right)^{2x+1 }= \left( \frac{5}{3} \right)^3}

\displaystyle{\left( \frac{3}{5} \right)^{\frac{2x+1}{3}}} = \left( \frac{3}{5} \right)^{-3}

\boxed{\red{\bold{Equating \: powers:}}}

\displaystyle{\frac{2x+1}{3}} = -3

\boxed{\red{\bold{Solving\:the\:equation:}}}

2x+1 = -9

2x = -10

 x = -5

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Answered by Nereida
17

\huge\star{\green{\underline{\mathfrak{Answer :-}}}}

\leadsto\tt{\bigg(\sqrt[3]{\dfrac{3}{5}}\bigg)^{2x+1}=\dfrac{125}{27}}

\leadsto\tt{{{\bigg(\bigg(\sqrt[3]{\dfrac{3}{5}}\bigg)}^{2x+1}\bigg)}^{3}={\bigg(\dfrac{125}{27}\bigg)}^{3}}

\leadsto\tt{\bigg({\dfrac{3}{5}}\bigg)^{2x+1}={\bigg(\dfrac{5}{3}\bigg)}^{9}}

\leadsto\tt{\bigg({\dfrac{3}{5}}\bigg)^{2x+1}={\bigg(\dfrac{3}{5}\bigg)}^{(-9)}}

So, 2x + 1 = -9

➜ 2x = - 10

➜ x = -5

\rule{200}2

Verification:

Putting the value of x in the question:

\leadsto\tt{\bigg(\sqrt[3]{\dfrac{3}{5}}\bigg)^{2(-5)+1}=\dfrac{125}{27}}

\leadsto\tt{\bigg(\sqrt[3]{\dfrac{3}{5}}\bigg)^{(-9)}=\dfrac{125}{27}}

\leadsto\tt{\bigg({\dfrac{3}{5}}\bigg)^{(-9\times\frac{1}{3})}=\dfrac{125}{27}}

\leadsto\tt{\bigg({\frac{3}{5}}\bigg)^{(\dfrac{-9}{3})}=\dfrac{125}{27}}

\leadsto\tt{\bigg({\frac{3}{5}}\bigg)^{(-3)}=\dfrac{125}{27}}

\leadsto\tt{\bigg({\frac{5}{3}}\bigg)^{(3)}=\dfrac{125}{27}}

Now, we observe that both left hand side and the right hand side are equal, hence verified.

\rule{200}4

Similar questions