Math, asked by bharat9870, 5 months ago

solve for x tan^-1[(1-x)/(1+x)]​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \tan^{ - 1} ( \frac{1 - x}{1 + x} )  =  \frac{1}{2}  \tan^{ - 1} (x)  \\

let \:  \: x =  \tan( \alpha )

 \implies \: \tan^{ - 1} ( \frac{1 -  \tan( \alpha ) }{1 +  \tan( \alpha ) } ) =  \frac{1}{2} \tan^{ - 1} ( \tan( \alpha ) ) \\

 \implies \tan^{ - 1} ( \tan( \frac{\pi}{4} -  \alpha ) )  =  \frac{1}{2}  \alpha  \\

   \implies \frac{\pi}{4}  -  \alpha  =  \frac{ \alpha }{2}  \\

  \implies  \frac{\pi}{4}  =  \frac{3 \alpha }{2}  \\

 \implies  \alpha  =  \frac{\pi}{6}  \\

so,

x =  \tan( \frac{\pi}{6} )  =  \frac{1}{ \sqrt{3} }

Similar questions