Math, asked by vikash8520, 1 year ago

solve for x.
 {a}^{2} {b}^{2}  {x}^{2}  +  {b}^{2}x -  {a}^{2}  x - 1 = 0

Answers

Answered by Anonymous
10

\huge\text{\underline{Answer}}

\bold{x =  -  \frac{1}{ {a}^{2} }  }

\bold{x =  \frac{1}{ {b}^{2} }  }

\sf{\underline{Step by step explanation}}

\bold{{a}^{2} {b}^{2} {x}^{2} + {b}^{2}x - {a}^{2} x - 1 = 0}

We have to find the value of X.

it is a quadratic polynomial so ,it has two zeroes.

Now take common,

\implies \bold{{b}^{2} x( {a}^{2} x + 1) - 1( {a}^{2}x + 1) = 0 }

\implies \bold{ ( {a}^{2} x + 1)( {b}^{2} x - 1) = 0 }

Either,

\implies \bold{( {a}^{2} x + 1) = 0 \:  \: or \: ( {b}^{2} x - 1) = 0}

\implies \bold{ {a}^{2} x =  - 1 \:  \:  \: or \:  \:  {b}^{2} x = 1}

\implies \bold{x =  \frac{ - 1}{ {a}^{2} }  \:  \:  \: or \:  \: x =  \frac{1}{ {b}^{2} }  }

hence, \boxed{\sf{ x =   \frac{ - 1}{ {a}^{2}  }  }}and \boxed{\sf{  x =  \frac{1}{ {b}^{2} }  }} are required solutions.

Answered by airt
0

Answer:

The above written answer is correct

Similar questions