Math, asked by aloobiriyani1999, 1 day ago

Solve for x
 log_{3}x +  log_{9}x  +  log_{81}x  =  \frac{7}{4}

Answers

Answered by arghyabaidya2003
0

Above the question is mentioned,this question's answer will be X=3.

Attachments:
Answered by talpadadilip417
3

\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

 \\ \color{maroon}  \bigstar \:  \: \rm \log _{3} x+\log _{9} x+\log _{61} x=\frac{7}{4}

 \[ \begin{array}{l}   \displaystyle \rm\ \Rightarrow \frac{1}{\log _{x} 3}+\frac{1}{\log _{x} 9}+\frac{1}{\log _{x} 81}=\frac{7}{4} \\ \\  \displaystyle \rm\ \Rightarrow \frac{1}{\log _{x} 3^{1}}+\frac{1}{\log _{x} 3^{2}}+\frac{1}{\log _{x} 3^{4}}=\frac{7}{4} \\ \\  \displaystyle \rm\ \Rightarrow \frac{1}{\log _{x} 3}+\frac{1}{2 \log _{x} 3}+\frac{1}{4 \log _{x} 3}=\frac{7}{4} \\ \\  \displaystyle \rm\ \Rightarrow \frac{1}{\log _{x} 3}\left[1+\frac{1}{2}+\frac{1}{4}\right]=\frac{7}{4} \\ \\  \displaystyle \rm\ \Rightarrow \log _{x} 3 \times \frac{7}{4}=\frac{7}{4} \\  \\  \displaystyle \rm\Rightarrow \log _{x} 3=\frac{7}{4} \times \frac{4}{7}=1=\log _{3} 3 \qquad \qquad \{  \because \:  \:  log_{a}(a) = 1\} \end{array} \]

Comparing, we get

 \color{green} \boxed{ \rm\[ \therefore x=3 \]}

Similar questions