Math, asked by Anonymous, 11 months ago

Solve for x :
\sf \dfrac{1}{x - 3} - \dfrac{1}{x + 5} = \dfrac{1}{6}

Thank You​

Answers

Answered by Thinkab13
13

Answer:

Hope the answer in the above attachment helps you....

Attachments:
Answered by Cynefin
27

 \huge{ \underline{ \star{ \bold{ \color{blue}{ Question...}}}}}

✏Solve for x :

\sf \dfrac{1}{x - 3} - \dfrac{1}{x + 5} = \dfrac{1}{6}

 \huge{ \underline{ \star{ \color{blue}{ \bold{ Answer...}}}}}

✳ 7 or -9

 \huge{ \underline{ \star{ \color{blue}{ \bold{Solution...}}}}}

⛄GIVEN...

\sf \dfrac{1}{x - 3} - \dfrac{1}{x + 5} = \dfrac{1}{6}

⛄TO FIND...

 \large{ \sf{ value \: of \: x...}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

 :\large{ \sf{ \implies{ \red{ \frac{1}{x - 3}  -  \frac{1}{x + 5}  =  \frac{1}{6} }}}} \\  \\ : \large{ \sf{ \implies{ \red{ \frac{x + 5 - (x - 3)}{(x  - 3)(x + 5)}  =  \frac{1}{6} }}}} \\  \\ : \large{ \sf{ \implies{ \red{ \frac{ \cancel{x} + 5 - \cancel{ x} + 3}{ {x}^{2} + 2x - 15 }  =  \frac{1}{6} }}}} \\  \\ : \large{ \sf{ \implies{ \red{ \frac{8}{ {x}^{2} + 2x - 15 }  =  \frac{1}{6} }}}} </p><p>\\{\sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:(cross \: multiplying...)}} \\  \\ : \large{ \sf{ \implies{ \red{ {x}^{2}  + 2x - 15 = 48}}}} \\   \\ : \large{ \sf{ \implies{ \red{ {x}^{2} + 2x - 63 = 0}}}} \\  \\:  \large{ \sf{ \implies{ \red{ {x}^{2}   + 9x - 7x - 63 = 0}}}} \\  \\ : \large{ \sf{ \implies{ \red{x(x + 9) - 7(x + 9) = 0}}}} \\  \\ : \large{ \sf{ \implies{ \red{(x - 7)(x + 9) = 0}}}} \\  \\ : \large{ \sf{ \implies{ \boxed{ \green{x = 7 \: or \:  - 9}}}}}

 \large{ \bold{ \purple{ \underline{required \: answer \: is \: 7 \: or \:  - 9}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

 \huge{\star{ \color{blue}{ \bold{ \underline{more \: to \: know...}}}}}

✒In order to factorise x2+ ax+ b, we need to find numbers p and q such that p+q= a and pq= b

✒After spilting, we need to take common factors and then we will get something like (x+p)(x+q)

Similar questions