Math, asked by priya146, 1 year ago

SOLVE FOR X
 \sqrt{6x + 7 \:  \: }  - (2x - 7) = 0

Answers

Answered by Swarup1998
2
The answer is given below :

Now,

 \sqrt{6x + 7 \: \: } - (2x - 7) = 0 \\  \\ or \:  \:  \sqrt{6x + 7 \: \: }  =  (2x - 7)  \\  \\ now \:  \: squaring \:  \: we \:  \: get \\  \\ 6x + 7 =  {(2x - 7)}^{2}  \\  \\ or \:  \: 6x + 7 = 4 {x}^{2}  - 28x + 49 \\  \\ or \:  \: 4 {x}^{2}  - 34x + 42 = 0 \\  \\ or \:  \: 2 {x}^{2}  - 17x + 21 = 0 \\  \\ or \:  \: 2 {x}^{2}  - 14x - 3x + 21 = 0 \\  \\ or \:  \: 2x(x - 7) - 3(x - 7) = 0 \\  \\ or \:  \: (x - 7)(2x - 3) = 0 \\  \\ either \:  \: x - 7 = 0 \:  \: or \:  \: 2x - 3 = 0 \\  \\ therefore \:  \: the \:  \: required \:  \:  \\ soution \:  \: is \\  \\ x = 7 \:  \: and \:  \: x =  \frac{3}{2}

Thank you for your question.
Similar questions