Math, asked by aryan021212, 1 day ago

Solve for x

 {x}^{2}  - {y}^{2} - x  -  3y  -  2 = 0
Explain every steps​

Answers

Answered by mathdude500
29

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm \:  {x}^{2} -  {y}^{2} - x - 3y - 2 = 0 \\

can be re-arranged as

\rm \:  {x}^{2}  - x-  {y}^{2}  - 3y - 2 = 0 \\

can be further rearrange as

\rm \:  {x}^{2}  - x-  ({y}^{2} +  3y +  2 )= 0 \\

\rm \:  {x}^{2}  - x-  [{y}^{2} +  2y + y +  2 ]= 0 \\

\rm \:  {x}^{2}  - x-  [y(y + 2)+ 1(y +  2) ]= 0 \\

\rm \:  {x}^{2}  - x- (y + 2)(y + 1)= 0 \\

\rm \:  {x}^{2} + x( - 1)- (y + 2)(y + 1)= 0 \\

\rm \:  {x}^{2} + x( - 2 + 1)- (y + 2)(y + 1)= 0 \\

\rm \:  {x}^{2} + x( - 2 + 1 + y - y)- (y + 2)(y + 1)= 0 \\

\rm \:  {x}^{2} + x[(y + 1) - (y + 2)]- (y + 2)(y + 1)= 0 \\

\rm \:  {x}^{2} + x(y + 1) - x(y + 2)- (y + 2)(y + 1)= 0 \\

\rm \: x(x + y + 1) - (y + 2)(x + y + 1) = 0 \\

\rm \: (x + y + 1)[x - (y + 2)] = 0 \\

\rm\implies \:x =  - (y + 1) \:  \: or \:  \: x = y + 2 \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \:  \: x =  - (y + 1) \:  \: or \:  \:  y + 2 \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by Anonymous
16

QUESTION :

  • x - y - x - 3y - 2 = 0

SOLUTION :

  • a x² + by² + 2g x 2 gy + C = 0

  • a = 1 b = - 1

  • a + b = 1 - 1 = 0

since a + b = 0. it represents pair of

parallel straight lines

  • x ^ 2 - y ^ 2 - x + 3y - 2 = 0

  • ( x - y +1) ( x + y - 2) = 0

  • x + y x - 2 y

  • - xy - y + 2 y

  • x - y - x

  • + 3y - 2

so, the answer will be :

x - y +1 = 0 or x + y - 2 = 0

Similar questions