Solve for x using quadratic equation 36x2-12a+(a2-b2)=0
Answers
Answered by
0
Given: The correct equation is 36x² - 12ax + ( a² - b² ) = 0
To find: The value of x.
Solution:
- Now we have given the quadratic equation as:
36x² − 12ax + (a² − b²) = 0
- Now we can write it as:
36x² − 12ax + a² − b² = 0
(36x² − 12ax + a²) − b² = 0
- 36x² − 12ax + a² is a square of 6x − a.
(6x − a)² − b² = 0
- So now using the identity, (a - b)(a + b) = a² - b²
(6x − a)² − b² = (6x − a − b) (6x − a + b)
(6x − a − b) (6x − a + b) = 0
(6x − a − b) = 0 or (6x − a + b) = 0
6x = a + b or 6x = a - b
x = ( a + b ) / 6, x = ( a − b ) / 6
Answer:
So the value of x is ( a + b ) / 6 or ( a − b ) / 6
Similar questions