Math, asked by mdaman18637, 1 year ago

solve for x where 0° less than or equal to X less than equal to 90° sin square x Plus cos square 30 degrees equal to 5 by 4​

Answers

Answered by kasyapbattulapabj3u
43

Answer:

x = 45°

Step-by-step explanation:

given,

sin²x + cos²30°=5/4

we know that cos30°=√3/2

so the eq becomes,

sin²x + (√3/2)² = 5/4

sin²x + ¾ = 5/4

sin²x =5/4-3/4

sin²x = ½

so, sinx =1/√2

so for this condition to be satisfied,

x= 45° ( since, 0°<x<90°)

Answered by lublana
10

x=45^{\circ}

Step-by-step explanation:

sin^2x+cos^2 30^{\circ}=\frac{5}{4}

Where 0^{\circ}\leq x\leq 90^{\circ}

We know that

cos30^{\circ}=\frac{\sqrt 3}{2}

Substitute the value

sin^2x+(\frac{\sqrt3 }{2})^2=\frac{5}{4}

sin^2x+\frac{3}{4}=\frac{5}{4}

sin^2x=\frac{5}{4}-\frac{3}{4}

sin^2x=\frac{5-3}{4}=\frac{2}{4}=\frac{1}{2}

sinx=\pm \frac{1}{\sqrt 2}

sinx=-\frac{1}{\sqrt 2}

It is not possible because 0\leq x\leq 90

sinx=\frac{1}{\sqrt 2}

sinx=sin45^{\circ}

Using sin45^{\circ}=\frac{1}{\sqrt 2 }

x=45^{\circ}

#Learns more:

https://brainly.in/question/2379834:Answered by Ananyaaishwarya

Similar questions