Math, asked by mishka131517, 11 months ago

solve for x: x- (18/x)=6 using Sridhar Acharya Method​

Answers

Answered by vedansh0103
1

x - (18 \div x) = 6 \\  ({x}^{2}  - 18) \div x = 6 \\  {x}^{2}  - 18 = 6x \\  {x}^{2}   - 6x - 18 = 0

now sridhar acharya method is for solving quadratic equations

when

a {x}^{2}  + bx + c = 0

then the roots or solutions of the equation are

x = ( - b +  \sqrt{ {b}^{2}  - 4ac} ) \div 2a

and

x = ( - b -  \sqrt{ {b}^{2}  - 4ac} ) \div 2a

so now in equation

 {x}^{2}  - 6x - 18 = 0

a=1,b=-6 and c=-18

x = ( - ( - 6) +  \sqrt{ { - 6}^{2}  - 4 \times 1 \times  - 18 } ) \div 2 \times 1 \\ x = (6 +  \sqrt{36 - ( - 72)} ) \div 2 \\ x = (6 +  \sqrt{36  + 72} ) \div 2 \\ x = (6 +  \sqrt{108} ) \div 2 \\ x = (6 + 10.3923) \div 2 \\ x = 16.3923 \div 2 \\ x = 8.19615

and

x = ( - ( - 6)  -   \sqrt{ { - 6}^{2} - 4 \times 1 \times  - 18 } ) \div 2 \times 1 \\ x = (6 -  \sqrt{36 - ( - 72)} ) \div 2 \\ x  = (6 -  \sqrt{36 + 72} ) \div 2 \\ x = (6 -  \sqrt{108} ) \div 2 \\ x = (6 - 10.3923) \div 2 \\ x =  - 4.3923 \div 2 \\ x =  - 2.19615

thus the two roots are 8.19615 and -2.19615

please please mark it as brainliest

#BAL

#answer with quality

Similar questions